Skip to main content
Log in

Numerical integration method in analysis of wire antennas

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The numerical evaluation of an integral is a frequently encountered problem in antenna analysis. A special Gauss-Christoffel quadrature formula for nonclassical weight function is constructed for solving the pseudo-singular integration problem arising from the analysis of thin-wire antennas. High integration accuracy is obtained at comparable low computation cost by the quadrature formula constructed. This integration method can be also used in other electromagnetic integral equation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King R W P.The Theory of Linear Antennas. Cambridge: Harvard University Press, 1956

    MATH  Google Scholar 

  2. Harrington R F. Matrix method for field problems.Proc IEE, 1967,55(2): 136–149

    MathSciNet  Google Scholar 

  3. Richmond J H. Radiation and scattering by thin wire structures in a homogeneous conducting medium.IEEE Transaction on Antennas and Propagation, 1974,22 (3): 365

    Google Scholar 

  4. Popovic B D, Djordjevio A R.Analysis and Synthesis of Wire Antennas. England: Research Studies Press, 1982

    Google Scholar 

  5. Wang Gaofeng. Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers.IEEE Transaction on Antennas and Propagation, 1997,45(5): 885–893

    Article  Google Scholar 

  6. Pearson L W. A separation of the logarithmic singularity in the exact kernel of the cylindrical antenna integral equation.IEEE Transaction on Antennas and Propagation, 1975,23(3):256–258

    Article  Google Scholar 

  7. Overfelt P L. An exact method of integration for vector potentials of thin dipole antennas.IEEE Transaction on Antennas and Propagation, 1987,35(4): 442–444

    Article  Google Scholar 

  8. Werner D H. An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius.IEEE Transaction on Antennas and Propagation, 1993,41(8): 1009–1018

    Article  Google Scholar 

  9. Werner D H. An exact integration procedure for vector potentials of thin circular loop antennas.IEEE Transaction on Antennas and Propagation, 1996,44 (2): 157–165

    Article  Google Scholar 

  10. Taylor C D, Wilton D R. The extended boundary condition solution of the dipole antenna of revolution.IEEE Transaction on Antennas and Propagation, 1972,20 (6): 772–776

    Article  Google Scholar 

  11. Popovic B D.CAD of Wire Antennas and Related Radiating Structures. England: Research Studies Press Ltd, 1993

    Google Scholar 

  12. Richmond J H. Digital computer solution of the rigorous equations for scattering problems.Proc IEEE, 1965,53(3): 796–804

    Article  Google Scholar 

  13. Harrison C W, Aronson E A. On the evalution of potential integrals occuring in antenna theory using digital computers.IEEE Transaction on Antennas and Propagation, 1967,15: 576

    Article  Google Scholar 

  14. Silvester P, Chan K K. Analysis of antenna structures assembled from arbitrarily located straight wires.Proc IEE, 1973,120(1): 21–26

    Google Scholar 

  15. Silvester P, Chan K K. Bubnov-Galerkin solution to wire-antenna problems.Proc IEE, 1972,119(8): 1095–1099

    Google Scholar 

  16. Silvester P, Hsieh M S. Projective solution of integral equations arising in electric and magnetic field problems.J Comput Phys., 1971,8: 73–82

    Article  MATH  Google Scholar 

  17. Hildebrand F B.Introduction to Numerical Analysis. USA: McGraw-Hill Inc, 1974

    MATH  Google Scholar 

  18. Xu Shiliang.C Programming Volume of the common used algorithms. Beijing: Tsinghua University Press, 1995

    Google Scholar 

  19. Gautschi W. Construction of Gauss-Christoffel quadrature formulas.Math Comp, 1968,22: 251–270

    Article  MATH  MathSciNet  Google Scholar 

  20. Press W H, Teukolsky S A, Vetterling W T,et al. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  21. Anderson D G. Gaussian quadrature formulae for ∫-ln(x)f(x)dx.Math Comp, 1965,19: 477–481

    Article  MATH  MathSciNet  Google Scholar 

  22. Popovic BD. Polynomial approximation of current along thin symmetrical cylindrical dipoles.Proc IEE, 1970,117(5): 873–978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shaolin.

Additional information

Supported by the 863 High Technology Project of China (No. 863-818-01-02) and the National Science Foundation of Hubei Province (No. 97J002)

Yang Shaolin: born in 1975, M. S graduate student.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaolin, Y., Hengyu, K. & Jiechang, H. Numerical integration method in analysis of wire antennas. Wuhan Univ. J. Nat. Sci. 3, 309–314 (1998). https://doi.org/10.1007/BF02829980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829980

Key words

Navigation