Skip to main content
Log in

Abstract

LetG be a split reductive group over a finite field Fq. LetF = Fq(t) and let A denote the adèles ofF. We show that every double coset inG(F)/G(A)/K has a representative in a maximal split torus ofG. HereK is the set of integral adèlic points ofG. WhenG ranges over general linear groups this is equivalent to the assertion that any algebraic vector bundle over the projective line is isomorphic to a direct sum of line bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anspach P, Unramified discrete spectrum of PSp4, PhD thesis (University of Chicago) (1995)

  2. Chevalley C, Les poids dominants, in: Séminaire C. Chevalley, 1956–1958. Classification des groupes de Lie algébriques,Secrétariat mathématique (Paris: 11 rue Pierre Curie) (1958) pp. 1601–1609

    Google Scholar 

  3. Dedekind R and Weber H, Die theorie der algebraischen funktionen einer veränderlichen,J. Reine Angew. Math. 92 (1882) 181–290

    Google Scholar 

  4. Efrat I, Automorphic spectra on the tree of PGL2,Enseign. Math. (2) 37(1-2) (1991) 31–43

    MathSciNet  Google Scholar 

  5. Geyer W-D, Die theorie der algebraischen funktionen einer veränderlichen nach Dedekind undWeber, in: Richard Dedekind: 1831–1981 (Braunschweig/Weisbaden: Friedr. Vieweg & Sohn) (1981) pp. 109–133

    Google Scholar 

  6. Godement R, Domaines fondamentaux des groupes arithmétiques, in: Séminaire Bourbaki, 1962/63. Fasc. 3,Secrétariat mathématique (Paris) (1964) no. 257, p. 25.

  7. Grothendieck A, Sur la classification des fibrés holomorphes sur la sphère de Riemann,Am. J. Math. 79 (1957) 121–138

    Article  MATH  MathSciNet  Google Scholar 

  8. Harder G, Halbeinfache Gruppenschemata über vollständigen Kurven,Invent. Math. 6 (1968) 107–149

    Article  MATH  MathSciNet  Google Scholar 

  9. Harder G, Minkowskische Reduktionstheorie über Funktionenkörpern,Invent. Math. 7 (1969) 33–54

    Article  MATH  MathSciNet  Google Scholar 

  10. Harder G, Chevalley groups over function fields and automorphic forms,Ann. Math. (2) 100 (1974) 249–306

    Article  MathSciNet  Google Scholar 

  11. Kaiser C and Riedel J-E, Tamagawazahlen und die Poincaréreihen affiner Weylgruppen,J. Reine Angew. Math. 519 (2000) 31–39

    MATH  MathSciNet  Google Scholar 

  12. Laumon G,Cohomology of Drinfeld modular varieties. Part II (Cambridge: Cambridge University Press) (1997); Automorphic forms, trace formulas and Langlands correspondence, with an appendix by Jean-Loup Waldspurger

    MATH  Google Scholar 

  13. Piatetski-Shapiro I I, Classical and adelic automorphic forms, An introduction, in: Automorphic forms, representations and L-functions(Proc. Symp. Pure Math. (Corvallis, Ore.: Oregon State Univ.) (1977)) Part 1, pp. 185–188;Am. Math. Soc. (R.I.: Providence) (1979)

    Google Scholar 

  14. Prasad A, Almost unramified discrete spectrum of split groups over Fq(t),Duke Math. J. 113(2) (2002) 237–257

    Article  MATH  MathSciNet  Google Scholar 

  15. Weil A, On the analogue of the modular group in characteristicp, in: Functional Analysis and Related Fields, Proc.Conf. for M. Stone, (Chicago, Ill.: University of Chicago) (1968) pp. 211–223 (New York: Springer) (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A. Reduction theory for a rational function field. Proc. Indian Acad. Sci. (Math. Sci.) 113, 153–163 (2003). https://doi.org/10.1007/BF02829764

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829764

Keywords

Navigation