Skip to main content
Log in

On the local Artin conductor fArtin (Χ) of a character Χ of Gal(E/K) — II: Main results for the metabelian case

  • Published:
Proceedings of the Indian Academy of Sciences - Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper which is a continuation of [2], is essentially expository in nature, although some new results are presented. LetK be a local field with finite residue class fieldK k. We first define (cf. Definition 2.4) the conductorf(E/K) of an arbitrary finite Galois extensionE/K in the sense of non-abelian local class field theory as wheren G is the break in the upper ramification filtration ofG = Gal(E/K) defined by\(G^{n_G } \ne G^{n_{G + \delta } } = 1,\forall \delta \in \mathbb{R}_{_ \ne ^ > 0} \). Next, we study the basic properties of the idealf(E/K) inO k in caseE/K is a metabelian extension utilizing Koch-de Shalit metabelian local class field theory (cf. [8]).

After reviewing the Artin charactera G : G → ℂ ofG := Gal(E/K) and Artin representationsA g G → G →GL(V) corresponding toa G : G → ℂ, we prove that (Proposition 3.2 and Corollary 3.5)\(\mathfrak{f}_{Artin} (\chi _\rho ) = \mathfrak{p}_K^{dim_\mathbb{C} (V)\left[ {n_{G/\ker (\rho )} + 1} \right]} \) where Χgr : G → ℂ is the character associated to an irreducible representation ρ: G → GL(V) ofG (over ℂ). The first main result (Theorem 1.2) of the paper states that, if in particular,ρ : G → GL(V) is an irreducible representation ofG(over ℂ) with metabelian image, then\(\mathfrak{f}_{Artin} (\chi _\rho ) = \mathfrak{p}_K^{[E^{\ker (\rho )^ \cdot :K} ](n_{G/\ker (\rho )} + 1)} \) where Gal(Eker(ρ)/Eker(ρ)•) is any maximal abelian normal subgroup of Gal(Eker(ρ)/K) containing Gal(Eker(ρ) /K)′, and the break nG/ker(ρ) in the upper ramification filtration of G/ker(ρ) can be computed and located by metabelian local class field theory. The proof utilizes Basmaji’s theory on the structure of irreducible faithful representations of finite metabelian groups (cf. [1]) and on metabelian local class field theory (cf. [8]).

We then discuss the application of Theorem 1.2 on a problem posed by Weil on the construction of a ‘natural’A G ofG over ℂ (Problem 1.3). More precisely, we prove in Theorem 1.4 that ifE/K is a metabelian extension with Galois group G, then\(A_G \simeq \sum\limits_N {\left[ {(E^N )^ \bullet :K} \right]\left( {n_{G/N} + 1} \right) \times \sum\limits_{\left[ \infty \right] \sim \in V_N } {Ind_{\pi _N^{ - 1} ((G/N)^ \bullet )}^G (\omega \circ \pi _N |_{\pi _N^{ - 1} ((G/N) \bullet )} )} } \) Kâzim İlhan ikeda whereN runs over all normal subgroups of G, and for such anN, V n denotes the collection of all ∼-equivalence classes [ω]∼, where ‘∼’ denotes the equivalence relation on the set of all representations ω : (G/N) → ℂΧ satisfying the conditions Inert(ω) = {δ ∈ G/N : ℂδ} = ω =(G/N) and\(\bigcap\limits_\delta {\ker (\omega _\delta ) = \left\langle {1_{G/N} } \right\rangle } \) where δ runs over R((G/N)/(G/N)), a fixed given complete system of representatives of (G/N)/(G/N), by declaring that ω1 ∼ ω2 if and only if ω1 = ω 2,δ for some δ ∈ R((G/N)/(G/N)).

Finally, we conclude our paper with certain remarks on Problem 1.1 and Problem 1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basmaji B G, Monomial representations and metabelian groups,Nagoya Math. J. 35 (1969) 99–107

    MATH  MathSciNet  Google Scholar 

  2. Ikeda K I, On the Artin conductor fArtin(Χ) of a character Χ of Gal(E/K) I: Basic definitions,Tr. J. Math. 23 (1999) 519–530

    MATH  Google Scholar 

  3. Ikeda K I, On the metabelian local Artin map I: Galois conjugation law,Tr. J. Math. 24 (2000) 25–58

    MATH  Google Scholar 

  4. Ikeda K I, A note on totally-ramified, n-abelian extensions of a local field,Acta Math. Vietnam (submitted)

  5. Ikeda K I, Non-abelian local class field theory I: Construction of 3-abelian local class field theory (preprint)

  6. Ikeda K I and Ikeda M G, Two lemmas on formal power series,Tr. J. Math. 23 (1999) 435–440

    MATH  Google Scholar 

  7. Iwasawa K, Local class field theory (1986) (Oxford, New York: Oxford University Press)

    MATH  Google Scholar 

  8. Koch H and de Shalit E, Metabelian local class field theory,J. Reine Angew. Math. 478 (1996) 85–106

    MATH  MathSciNet  Google Scholar 

  9. Neukirch J, Algebraic number theory (1999) (Berlin, Heidelberg, New York: Springer-Verlag)

    MATH  Google Scholar 

  10. Sen S, Ramification in p-adic Lie extensions,Invent. Math. 17 (1972) 44–50

    Article  MATH  MathSciNet  Google Scholar 

  11. Serre J-P, Représentations linéaires des groupes finis (1971) (Paris: Hermann)

    MATH  Google Scholar 

  12. Serre J-P, Corps locaux (Paris: Hermann) (1962)

    MATH  Google Scholar 

  13. Serre J-P, Local fields (English translation of [12] by M J Greenberg) GTM (1979) (Berlin, Heidelberg, New York: Springer-Verlag) vol. 67

    Google Scholar 

  14. Serre J-P, Sur la rationalité des représentations d’Artin,Ann. Math. 72 (1960) 405–420

    Article  MathSciNet  Google Scholar 

  15. Tate J, Number theoretic background in: Automorphic Forms, Representations, L-functions. Proc. Symp. Pure Math.,Am. Math. Soc. (1979) (Providence, Rhode Island, USA) vol. 33, pp. 3–26

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, K.I. On the local Artin conductor fArtin (Χ) of a character Χ of Gal(E/K) — II: Main results for the metabelian case. Proc. Indian Acad. Sci. (Math. Sci.) 113, 99–137 (2003). https://doi.org/10.1007/BF02829762

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829762

Keywords

Navigation