Skip to main content
Log in

Flexural-torsional buckling of stepped beams subjected to pure bending

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The cross sections of continuous multi-span beams are sometimes increased suddenly, or stepped, at interior supports of continuous beams to resist high negative moments. An investigation of the elastic flexural-torsional buckling (FTB) behavior of I-shaped stepped beams was conducted using finite element method (FEM) and resulted in the development of design equations for beams having singly or doubly stepped cross sections within a laterally unbraced length. The finite element models are subjected to pure bending moment in the entire beam span. Results from the design equations were demonstrated with comparisons between the proposed equations or the weighted average approach (WAA) and FEM results for doubly and singly stepped beam spans of existing highway bridges. The new equations proposed definitely improve current design methods for the FTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for FTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C b :

modifier for moment gradient

C st :

stepped beam factor based on action of pure bending

C w :

warping constant of beam

E :

modulus of elasticity of steel

G :

shear modulus of elasticity of steel

h :

beam depth

I y :

moment of inertia of beam aboutY-axis

J :

St. Venant torsional constant for beam

L b :

laterally unbraced length

M 0 :

end moment that produce largest compressive stress on bottom flange

M 1 :

smaller end moment of beam

M CL :

moment at centerline of segment

M ocr :

flexural-torsional buckling strength of prismatic beam under pure bending

M ost :

flexural-torsional buckling strength of stepped beam under pure bending

α:

ratio of stepped length along span

β:

ratio for defining relative flange width of large and small cross section; and

γ:

ratio for defining relative flange thickness of large and small cross section

References

  • American Association of State Highway and Transportation Officials (AASHTO) (1998).Load and Resistance Factor Design (LRFD) Bridge Design Specifications, Second Edition, Washington, D.C.

  • American Institute of Steel Construction (AISC) (1998).Load and Resistance Factor Design. Second Edition, Chicago, Illinois.

  • Galambos, T.V. (1998).Guide to Stability Design Criteria for Metal Structures, Wiley, New York, NY.

    Google Scholar 

  • Kirby, P.A. and Nethercot, D.A. (1979).Design for Structural Stability, Wiley, New York, NY.

    Google Scholar 

  • Kitipornchai, S. and Trahair, N.S. (1980). “Buckling Properties of Monosymmetric I-Beams.” ASCEJournal of Structural Division, Vol. 106, No. 5, pp. 941–957.

    Google Scholar 

  • MSC/NASTRAN (1998).Quick Reference Guide (Version 70.5), MacNeal-Schwindler corporation, Los Angeles, CA.

  • MSC/PATRAN (2000).Introduction to MSC PATRAN (Version 9.0), MacNeal-Schwindler Corporation, Los Angeles, CA.

  • Park, J.S. (2002). “Lateral-Torsional Buckling of Beams with Top Flange Bracing.” Ph.D. dissertation, Auburn University, Auburn, AL.

    Google Scholar 

  • Park, J.S., Stallings, J.M., and Kang, Y.J. (2004). “Lateral-Torsional Buckling of Prismatic Beams with Continuous Top-Flange Bracing.”Journal of Constructional Steel Research, Vol. 60, Issue 2, pp. 147–160.

    Article  Google Scholar 

  • Timoshenko S. and Gere, J. (1961).Theory of Elastic Stability, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Trahair, N.S. (1993).Flexural-Torsional Buckling of Structures, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Trahair, N.S. and Kitipornchai, S. (1971). “Elastic Lateral Buckling of Stepped I-Beams.” ASCEJournal of Structural Division, Vol. 97, No. 10, pp. 2535–2548.

    Google Scholar 

  • Yura, J.A. (1993). “Fundamental of Beam Bracing.”Proceeding, Annual Conference of “Is your structure suitably braced?”, Structural Steel Research Council, Milwaukee, Wisconsin, April, 20pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Sup Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Kang, YJ. Flexural-torsional buckling of stepped beams subjected to pure bending. KSCE J Civ Eng 8, 75–82 (2004). https://doi.org/10.1007/BF02829083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829083

Keywords

Navigation