Skip to main content
Log in

A two-dimensional hydrodynamic code for astrophysical flows

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We present a two-dimensional hydrodynamic code suited to study astrophysical flows in many different environments. The code solves the hydrodynamic equations in conservative form in the most used coordinate systems and is based on an explicitfully two-dimensional flux corrected transport (FCT) technique, which ensures an accurate description of steep gradient regions and shocks, a relatively ample flexibility to include a variety of physical effects, and a good efficiency for speed on vector or array processors. Extensive testing has allowed an accurate «tuning» of the FCT numerical parameters. This code is among the best FCT codes and performs well in a whole set of demanding strongly nonlinear hydrodynamic tests, getting close to performances of more complex codes, while remaining less computationally expensive and more than sufficient for most astrophysical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Anzer, G. Boerner andJ. J. Monaghan:Astron. Astrophys.,176, 235 (1987).

    ADS  Google Scholar 

  2. E. Shima, T. Matsuda, H. Takeda andK. Sawada:Mon. Not. R. Astron. Soc.,217, 367 (1985).

    Article  ADS  Google Scholar 

  3. W. Kley andG. Hensler:Astron. Astrophys.,172, 124 (1987).

    ADS  Google Scholar 

  4. G. E. Eggum, F. V. Coroniti andJ. I. Katz:Astrophys. J.,277, 296 (1987).

    Google Scholar 

  5. M. Rozycska:Astr. Ap.,143, 59 (1985).

    ADS  Google Scholar 

  6. G. Tenorio-Tagle andM. Rozycska:Astron. Astrophys.,155, 120 (1986).

    ADS  Google Scholar 

  7. M. Rozycska andG. Tenorio-Tagle:Astron. Astrophys.,176, 329 (1987).

    ADS  Google Scholar 

  8. M. L. Norman, L. Smarr, K. H. A. Winkler andM. D. Smith:Astron. Astrophys.,113, 285 (1982).

    ADS  Google Scholar 

  9. C. N. Arnold andW. D. Arnett:Astrophys. J. Lett.,305, L57 (1986).

    Article  ADS  Google Scholar 

  10. D. Kössl andE. Müller:Astron. Astrophys.,206, 204 (1988).

    Google Scholar 

  11. C. A. Chang, A. V. R. Schiano andA. M. Wolfe:Astrophys. J.,322, 180 (1987).

    Article  ADS  Google Scholar 

  12. T. J. Gaetz, E. E. Salpeter andG. Shaviv:Astrophys. J.,316, 530 (1987).

    Article  ADS  Google Scholar 

  13. G. Mair, E. Mueller, W. Hillebrandt andC. N. Arnold:Astron. Astrophys.,199, 114 (1988).

    ADS  MATH  Google Scholar 

  14. M. Hattori andA. Habe: preprint (1989).

  15. R. B. Dahlburg, C. R. DeVore, J. M. Picone, J. T. Mariska andJ. T. Karpen:Astrophys. J.,315, 385 (1987).

    Article  ADS  Google Scholar 

  16. J. A. Robertson andJ. Frank:Mon. Not. R. Astron. Soc.,221, 279 (1986).

    Article  ADS  MATH  Google Scholar 

  17. H. Takewaki andT. Yabe:J. Comput. Phys.,70, 355 (1987).

    Article  ADS  MATH  Google Scholar 

  18. P. Colella andP. Woodward:J. Comput. Phys.,54, 174 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. W. D. Henshaw:J. Comput. Phys.,68, 25 (1987).

    Article  ADS  MATH  Google Scholar 

  20. E. E. Kunhardt andC. Wu:J. Comput. Phys.,68, 127 (1987).

    Article  ADS  MATH  Google Scholar 

  21. G. Patnaik, R. H. Guirguis, J. P. Boris andE. S. Oran:J. Comput. Phys.,71, 1 (1987).

    Article  ADS  MATH  Google Scholar 

  22. P. Steinle andR. Morrow:J. Comput. Phys.,80, 61 (1989).

    Article  ADS  MATH  Google Scholar 

  23. P. Woodward andP. Colella:J. Comput. Phys.,54, 115 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. P. Boris andD. L. Book:J. Comput. Phys.,11, 38 (1973).

    Article  ADS  MATH  Google Scholar 

  25. J. P. Boris, D. L. Book andK. Hain:J. Comput. Phys.,18, 248 (1975).

    Article  ADS  MATH  Google Scholar 

  26. J. P. Boris andD. L. Book:J. Comput. Phys.,20, 397 (1976).

    Article  ADS  MATH  Google Scholar 

  27. S. T. Zalesak:J. Comput. Phys.,31, 335 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. P. Boris, D. L. Book andS. Zalesak:Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, edited byD. Book (Springer-Verlag, New York, N.Y., 1981), p. 29.

    Google Scholar 

  29. J. Jong andG. S. Stiles:Proceedings of the Occam User Group 11th Meeting, Edimburgh, 1989, edited byJ. Wexler (IOS Publishers, Amsterdan, 1989), p. 113.

    Google Scholar 

  30. R. D. Richtmyer andK. W. Morton:Difference Methods for Initial-Value Problems (Interscience Publishers, New York, N.Y., 1967).

    MATH  Google Scholar 

  31. G. A. Sod:J. Comput. Phys.,27, 1 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. J. F. Hawley, L. L. Smarr andJ. R. Wilson:Astrophys. J.,227, 296 (1984).

    Article  ADS  Google Scholar 

  33. J. F. Hawley, L. L. Smarr andJ. R. Wilson:Astrophys. J. Suppl. Ser.,55, 211 (1984).

    Article  ADS  Google Scholar 

  34. E. Trussoni, A. Ferrari, R. Rosner andK. Tsinganos:Astrophys. J.,325, 417 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reale, F., Peres, G. & Serio, S. A two-dimensional hydrodynamic code for astrophysical flows. Nuov Cim B 105, 1235–1254 (1990). https://doi.org/10.1007/BF02828977

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02828977

PACS

PACS

PACS

Navigation