Skip to main content
Log in

Hydromagnetic stability of an annular jet surrounding a solid rod under a tangential varying magnetic field

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The magnetohydrodynamic stability of an annular liquid jet, concentric with a solid cylinder as a mantle, and acting upon it through capillarity, electromagnetic (with varying magnetic field) and inertia forces, is discussed. An eigenvalue relation, valid to all nonaxisymmetric and axisymmetric disturbances, is derived and studied analytically and the results are confirmed numerically. The model is capillary unstable only to small axisymmetric disturbances whose wavelengths are longer than the annular jet circumference and stable to all other disturbances. The magnetic field inside the jet is stabilizing in all disturbances for all wavelengths and easily suppressing the capillary instability. The vacuum tangential varying magnetic field is destabilizing to the axisymmetric mode for all wavelengths, while to nonaxisymmetric modes it is stabilizing or destabilizing according to restrictions. The required restrictions for suppressing the capillary instability by the electromagnetic force are identified. The analytical stability results are confirmed numerically utilizing the stability criteria in the computer simulation for different values of the problem parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Plateau:Smithson. Rep.,250, 1 (1863).

    Google Scholar 

  2. J. W. Rayleigh:Scientific papers I, II and III (Cambridge, 1899).

  3. C. Weber:Z. Angew. Math. Mech.,11, 136 (1931).

    Article  Google Scholar 

  4. J. W. Rayleigh:The Theory of Sound, Vol.1 and2 (Dover Publ., New York, N.Y., 1945).

    MATH  Google Scholar 

  5. S. Chandrasekhar:Hydrodynamic and Hydromagnetic Stability (Dover Publ., New York, N.Y., 1981).

    Google Scholar 

  6. D. P. Wang:J. Fluid. Mech.,34, 299 (1968).

    Article  ADS  MATH  Google Scholar 

  7. M. C. Yuen:J. Fluid Mech.,33, 151 (1968).

    Article  ADS  MATH  Google Scholar 

  8. A. H. Nayfeh:Phys. Fluids,13, 841 (1970).

    Article  ADS  MATH  Google Scholar 

  9. T. Kakutani, Y. Inoue andI. Kan:J. Phys. Soc. Jpn.,37, 529 (1974).

    Article  ADS  Google Scholar 

  10. R. W. Lardner andS. K. Trehan:Astrophys. Space Sci.,96, 261 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. H. Kendall:Phys. Fluids,29, 2086 (1986).

    Article  ADS  MATH  Google Scholar 

  12. A. E. Radwan andS. S. Elazab:Simon Stevin, Wis. Natuurkd. Tijdschr.,61, 293 (1987).

    MathSciNet  Google Scholar 

  13. A. E. Radwan:J. Magn. Magn. Mater.,72, 219 (1988).

    Article  ADS  Google Scholar 

  14. A. E. Radwan:Indian J. Pure Appl. Math.,19(11), 1105 (1988).

    Google Scholar 

  15. M. Abramowitz andI. Stegun:Handbook of Mathematical Functions (Dover Publ., New York, N.Y., 1965).

    Google Scholar 

  16. D. K. Callebaut, A. E. Radwan andS. S. Elazab:Proc. Europ. Phys. Soc. D,10, 15 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radwan, A.E. Hydromagnetic stability of an annular jet surrounding a solid rod under a tangential varying magnetic field. Nuov Cim B 105, 1185–1199 (1990). https://doi.org/10.1007/BF02828972

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02828972

PACS

Navigation