Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 2, Issue 3, pp 397–412 | Cite as

On the Yang-Feldman formalism

  • S. S. Schweber
Article

Summary

The connection between the in- and out-fields and the interaction representation fields is established. The commutation rules for these as well as the symmetric field are obtained. The formulation of scattering theory in terms of these fields is rederived from their connection with the interaction representation.

Riassunto

Si stabilisce la relazione tra i campiin eout e il campo della rappresentazione per interazione. Si ottengono le regole di commutazione sia per questi campi che per il campo simmetrico. Dalla loro connessione con la rappresentazione per reazione si deriva nuovamente la formulazione della teoria dello scattering in termini di questi campi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. N. Yang andD. Feldman:Phys. Rev.,79, 972 (1950).MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. (2).
    G. Källén:Ark. för Phys.,2, no. 37, 371 (1950).Google Scholar
  3. (3).
    G. Källén:Helv. Phys. Acta,26, 755 (1953).zbMATHGoogle Scholar
  4. (4).
    M. L. Goldberger:Phys. Rev.,97, 508 (1955).MathSciNetADSCrossRefGoogle Scholar
  5. (5).
    F. Low:Phys. Rev.,96, 1428 (1954).MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. (6).
    Y. Nambu:98, 803 (1955).Google Scholar
  7. (7).
    F. Low:Phys. Rev.,97, 1392 (1955).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. (8).
    See alsoH. Lehmann, K. Symanzik andW. Zimmermann:Nuovo Cimento,1, 205 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  9. (9).
    M. Gell-Mann, M. L. Goldberger andW. Thirring:Phys. Rev.,95, 1612 (1954).MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. (10).
    F. J. Dyson:Phys. Rev.,75, 486 (1949).MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. (11).
    CompareF. J. Dyson:Phys. Rev.,82, 428 (1951).MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. (12).
    See, for example,M. Gell-Mann andM. Goldberger:Phys. Rev.,91, 398 (1953); eqs. (3.26) and (3.27).MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. (13).
    M. Gell-Mann andF. Low:Phys. Rev.,84, 350 (1951).MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. (*).
    M. L. Goldberger has since given a much simpler proof of the dispersion relation. The author wishes to thank ProfessorGoldberger for communicating this proof to him.Google Scholar
  15. (*).
    Compare this result with the discussion following Eq. (52) of reference (2).Google Scholar
  16. (16).
    See in this concectionM. L. Goldberger:Phys. Rev.,84, 929 (1951).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1955

Authors and Affiliations

  • S. S. Schweber
    • 1
  1. 1.Brandeis UniversityWaltham

Personalised recommendations