Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 66, Issue 3, pp 536–554 | Cite as

Quantum field theory on lightlike slabs

  • H. Leutwyler
  • J. R. Klauder
  • L. Streit
Article

Summary

Restricting the support of relativistic quantum fields to lightlike hyperplanes (e.g. x0+x3)=const) we find examples of such fields to exist as well-defined self-adjoint operators with properties however that differ vastly from those of fields on the usual spacelike surfaces. We show that on a lightlike hyperplane 1) the free-field algebra is irreducible (instead of Abelian, and in contrast to what one would expect of data on a characteristic surface) and 2) fields with different masses become unitarily equivalent (whereas they are inequivalent on spacelike planes). Furthermore the field algebra restricted to the space-time slab between two parallel lightlike planes is always irreducible (while there are counterexamples for spacelike slabs). We establish this directly for generalized free fields and rederive it for Wightman fields in gereral.

Keywords

Free Field Spacelike Surface Canonical Pair Weyl Operator Field Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Квантовая теория поля в светоподобных плоскопараллельных слоях

Резюме

Ограничиваясь подтверждением релятивистских квантовых полей на светоподобных гиперплоскостях (t.e.,x0+x3=const), мы находим, что примеры таких полей существуют, как отчетливо выраженные самосопряженные операторы со свойствами, которые, однако, существенно отличаются от свойств полей на обычных пространственноподобных поверхностях. Мы показываем, что на светоподобной гиперплоскости 1) алгебра свободного поля является неприводимой (вместо абелевой и, в противоположность тому, что следовало бы из данных на характеристической поверхности) и 2) поля с различными массами становятся унитарно эквивалентными (в то время как они являются неэквивалентными на пространст-венноподобных плоскостях). Кроме того, алгебра полей, ограниченная простран-ственноподобным плоскопараллеляным слоем между двумя светоподобными плоскостями, всегда является неприводимой (тогда как существуют контр-примеры для пространственноподобных плоскопараллельных слоев). Мы устанавливаем это непосредственно для обобщенных свободных полей и, в общем случае, заново выводим для полей Вайтмана.

Riassunto

Restringendo la base dei campi relativistici quantizzati agli iperpiani tipo luce (p.e.x0+x3=costante), si trovano esempi che confermano l'esistenza di tali campi come operatori autoaggiunti ben definiti ma con proprietà che differiscono molto da quelle dei campi sulle normali superfici spacelike. Si dimostra che su di un iperpiano tipo luce 1) l'algebra dei campi liberi è irriducibile (invece che abeliana, in contrasto con quanto ci si aspetterebbe dai dati su di una superficie caratteristica) e 2) campi con masse differenti divengono unitariamente equivalenti (mentre non lo sono su piani tipo spazio). Inoltre l'algebra dei campi ristretta alla lastra spaziotemporale fra due piani tipo luce paralleli è sempre irriducibile (mentre vi sono controesempi per le lastre tipo spazio). Si stabilisce ciò direttamente per campi liberi generalizzati e lo si ricava di nuovo per i campi di Wightman in generale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Fubini andG. Furlan:Physics,1, 229 (1965).Google Scholar
  2. (2).
    For a general discussion of the infinite-momentum limit seeF. Coester andG. Roepstorff:Phys. Rev.,155 B, 1583 (1967);H. Bebie andH. Leutwyler:Phys. Rev. Lett.,19, 618 (1967).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    For a review see,e.g., the proceedings of the Summer School for Theoretical Physics, University of Karlsruhe, published inSpringer Tracts in Mod. Phys.,50 (1969).Google Scholar
  4. (4).
    K. Bardakçi andG. Segre:Phys. Rev.,159, 1263 (1967);L. Susskind:Phys. Rev.,165, 1535 (1967);J. Jersak andJ. Stern: Dubna preprints E2-3469 (1967) and E2-3990 (1968);K. Bardakçi andM. B. Halpern: preprint UCRL 18360 (1968).ADSCrossRefGoogle Scholar
  5. (5).
    H. Leutwyler:Lecture given at the VII Internationale Universitätswochen, Schladming, published inActa Phys. Austriaca Suppl., V (1968).Google Scholar
  6. (6).
    H. Leutwyler: Lecture given at the Summer School for Theoretical Physics, University of Karlsruhe,Springer Tracts in Mod. Phys.,50, 29 (1969).ADSGoogle Scholar
  7. (7).
    H. Bondi, M. G. J. Vander Burg andA. W. K. Metzner:Proc. Roy. Soc., A629, 21 (1962);R. Sachs:Proc. Roy. Soc., A270, 103 (1962);R. A. Neville:Quantum electrodynamics in a laser pulse, Syracuse University thesis, August 1968.ADSMathSciNetCrossRefGoogle Scholar
  8. (8).
    Cf.,e.g.,M. Wellner: unpublished preprint (1959);O. W. Greenberg:Ann. of Phys.,16, 158 (1961);L. Streit:Helv. Phys. Acta,39, 65 (1966).Google Scholar
  9. (9).
    R. Haag andB. Schroer:Journ. Math. Phys.,3, 248 (1962);H. J. Borchers:Three remarks on quantum field theory, N.Y.U. Progress Report (1963);C. Möllenhoff:Comm. Math. Phys.,11, 227 (1969).ADSMathSciNetCrossRefGoogle Scholar
  10. (10).
    R. F. Streater andA. S. Wightman:PCT, Spin and Statistics, and All That, Chap. 3 (New York, 1964).Google Scholar
  11. (12).
    S.-J. Chang andL. O'Raifeartaigh:Journ. Math. Phys.,10, 21 (1969).ADSMathSciNetCrossRefGoogle Scholar
  12. (13).
    The fact that the stability group is larger in the case of a lightlike surface can be understood as follows. Clearly every Poincaré transformation carries a lightlike surface again into a lightlike surface. The manifold of lightlike planes is smaller than the manifold of spacelike planes; therefore the image of the plane will coincide with the original one for a larger class of group elements.Google Scholar
  13. (14).
    S. Coleman:Phys. Lett.,19, 144 (1965);E. Fabri andL. E. Picasso:Phys. Rev. Lett.,16, 408 (1966);B. Schroer andP. Stichel:Commun. Math. Phys.,3, 258 (1966).ADSMathSciNetCrossRefGoogle Scholar
  14. (15).
    S. Coleman:Journ. Math. Phys.,7, 787 (1966).ADSCrossRefGoogle Scholar
  15. (16).
    Similarly one finds the Fock vacuum to be stable if the interaction Hamiltonian is taken not as at-plane integral but as anl-plane integral, a result reminiscent of Weinberg's statement (S. Weinberg:Phys. Rev.,150, 1313 (1966) that «vacuum diagrams» vanish in the infinite-momentum limit. Consequently, the possibility of basing perturbation theory onl-plane data merits some interest.ADSCrossRefGoogle Scholar
  16. (17).
    Cf.,e.g.,H. Araki andE. J. Woods:Journ. Math. Phys.,4, 637 (1963);J. R. Klauder andL. Streit:Journ. Math. Phys.,10, 1661 (1969).ADSMathSciNetCrossRefGoogle Scholar
  17. (18).
    R. Haag:Dan. Mat. Fys. Med.,29, No. 12 (1955).Google Scholar
  18. (19).
    J. R. Klauder andJ. McKenna:Journal. Math. Phys.,6, 68 (1965).ADSMathSciNetCrossRefGoogle Scholar
  19. (20).
    N. I. Akhiezer andI. M. Glazman:Theory of Linear Operators in Hilbert Space, vol.1 (New York, 1961), p. 72.Google Scholar
  20. (21).
    J. von Neumann:Mathematische Grundlagen der Quantenmechanik (Berlin, 1932), p. 216;V. Bargmann:Commun. Pure and Appl. Math.,14, 187 (1961);J. R. Klauder:Ann. of Phys.,11, 123 (1960).Google Scholar
  21. (22).
    H. Araki:Journ. Math. Phys.,1, 492 (1960);L. Streit:Nuovo Cimento 62 A, 673 (1969).ADSMathSciNetCrossRefGoogle Scholar
  22. (23).
    J. R. Klauder, J. McKenna andE. J. Woods:Journ. Math. Phys.,7, 822 (1966);L. Streit:Comm. Math. Phys.,4, 22 (1967).ADSMathSciNetCrossRefGoogle Scholar
  23. (24).
    Cf.e. g. I. M. Gel'fand andN. J. Wilenkin:Verallgemeinerte Funktionen, vol.4, (Berlin, 1964), p. 129.Google Scholar
  24. (25).
    I. M. Gel'fand andN. J. Wilenkin:Verallgeneinerte Funktionen, vol.4, (Berlin, 1964), p. 147.Google Scholar
  25. (26).
    R. Jost:The General Theory of Quantized Fields (Providence, R. I., 1965), p. 99.Google Scholar
  26. (27).
    H. Reeh andS. Schlieder:Nuovo Cimento,22, 1051 (1961).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • H. Leutwyler
    • 1
  • J. R. Klauder
    • 2
  • L. Streit
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations