Skip to main content
Log in

Antibiotics for treatment of resistant gram-positive coccal infections

  • New Drugs Antibiotics
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Vancomycin is considered the workhorse for the treatment of most drug-resistant gram-positive bacterial infections. However, concerns have been raised regarding the increasing rates of vancomycin-resistant enterococci and the clinical shortcomings of vancomycin in the treatment of invasiveStaphylococcus aureus infections. Resources have been committed to the development of antimicrobial agents with activity against these organisms. This review will focus on the newer antibacterial agents that have been developed for the treatment of resistant gram-positive pathogens. Included in this review are the agents: quinupristin-dalfopristin, linezolid, daptomycin, telithromycin, and tigecycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin.Antimicrobial Agents & Chemotherapy 1998; 42(5): 1303–1304.

    CAS  Google Scholar 

  2. Summary of notifiable diseases, United States 1994.MMWR Morb Mortal Wkly Rep 1994; 43(53): 1–80.

    Google Scholar 

  3. Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. Emergence of vancomycin tolerance inStreptococcus pneumoniae [see comments].Nature 1999; 399(6736): 590–593.

    Article  PubMed  CAS  Google Scholar 

  4. Smith TL, Pearson ML, Wilcox KR, Cruz C, Lancaster MV, Robinson-Dunn B, Tenover FC, Zervos MJ, Bank JD, White E, Jarvis WR. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. [comment].New England Journal of Medicine 1999; 340(7): 493–501.

    Article  PubMed  CAS  Google Scholar 

  5. Staphylococcus aureus resistant to vancomycin-United States, 2002. MMWR—Morbidity & Mortality Weekly Report 2002; 51(26): 565–567.

    Google Scholar 

  6. Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis [see comments].Annals of Internal Medicine 1991; 115(9): 674–680.

    PubMed  CAS  Google Scholar 

  7. Fowler VGJ, Kong LK, Corey GR, Gottlieb GS, McClelland, RS, Sexton DJ, Gesty-Palmer D, Harrell LJ. Recurrent Staphylococcus aureus bacteremia: pulsed-field gel electrophoresis findings in 29 patients.Journal of Infectious Diseases 1999; 179(5): 1157–1161.

    Article  PubMed  Google Scholar 

  8. Gonzalez C, Rubio M, Romero-Vivas J, Gonzalez M, Picazo JJ. Bacteremic pneumonia due to Staphylococcus aureus: A comparison of disease caused by methicillin-resistant and methicillin-susceptible organisms.Clinical Infectious Diseases 1999; 29(5): 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  9. Vasquez D. The streptogramin family of antibiotics. In: Gottlieb D, Shaw PD, eds. Antibiotics. New York: Springer-Verlag, 1967; 387–403.

    Google Scholar 

  10. Jones RN, Ballow CH, Biedenbach DJ, Deinhart JA, Schentag JJ. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, synercid)tested against over 28,000 recent clinical isolates from 200 medical enters in the United States and Canada.Diagn Microbial Infect Dis 1998; 31: 437–451.

    Article  CAS  Google Scholar 

  11. Craig W, Ebert S.Pharmacodynamic activities of RP 59500 in animal infection model. InProgram and abstracts of the thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy: 1993, Ernest N. Moprial Convention Center, New Orleans, Louisiana. Washington, D.C. American Society for Microbiology, 1993.

    Google Scholar 

  12. Moellering RC, Linden PK, Reinhardt J, Blumberg EA, Bompart F, Talbot GH. The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group.J Antimicrob Chemotherapy 1999; 44: 251–261.

    Article  CAS  Google Scholar 

  13. Synercid [annotated package insert]. Parsippany, N.J.: Aventis Pharmaceuticals, 1999.

  14. Nichols RL, Graham DR, Barriere SL, Rodgers A, Wilson SE, Zervos Met al. Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicoated studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group.J Antimicrob Chemotherapy 1999; 44: 263–273.

    Article  CAS  Google Scholar 

  15. Raad I, Bompart F, Hachem R. Prospective, randomized dose-ranging open phase II pilot study of quinupristin/dalfopristin versus vancomycin in the treatment of catheter-related staphylococcal bacteremia.Eur J Clin Microbiol Infect Dis 1999; 18: 199–202.

    Article  PubMed  CAS  Google Scholar 

  16. Brickner SJ. Oxazolidinone antibacterial agents.Current Pharmaceutical Design 1996;2:175–94.

    CAS  Google Scholar 

  17. Ford C, Hamel J, Stapert D, Moerman J, Hutchinson D, Barbachyn Met al. Oxazolidinones: a new class of antimicrobials.Infections in Medicine 1999; 16: 435–445.

    Google Scholar 

  18. Daly JS, Eliopoulos GM, Willey S, Moellering RC Jr. Mechanism of action andin vitro andin vivo activities of S-6123, a new oxazolidinone compound.Antimicrob Agents Chemother 1988; 32: 1341–1346.

    PubMed  CAS  Google Scholar 

  19. Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin.Antimicrob Agents Chemother 1997; 41: 2127–2131.

    PubMed  CAS  Google Scholar 

  20. Swaney SM, Aoki H, Ganoza MC, Shinabarger DL. The oxazolidione linezolid inhibits initiation of protein synthesis in bacteria.Antimicrob Agents Chemother 1998; 42: 3251–325.

    PubMed  CAS  Google Scholar 

  21. Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman Let al. Linezolid resistance in a clinical isolate ofStaphylococcus aureus [Letter].Lancet 2001; 358: 207–208.

    Article  PubMed  CAS  Google Scholar 

  22. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin-resistantEnterococcus faecium resistant to linezolid [Letter].Lancet 2001; 357: 1179.

    Article  PubMed  CAS  Google Scholar 

  23. Zurenko G, Todd WM, Hafkin BA. Development of linezolid-resistantEnterococcus faecium in two compassionate use programs patients treated with linezolid [Abstract]. InProgram and Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1999, San Francisco, California. Washington, DC: American Soc for Microbiology; 1999. Abstract no. 848.

    Google Scholar 

  24. Zyvox [package insert]. Kalamazoo, MI: Pharmacia & Upjohn; 2000.

  25. Diekema DI, Jones RN. Oxazolidinones: a review.Drugs 2000; 59: 7–16.

    Article  PubMed  CAS  Google Scholar 

  26. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SEet al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents.Antimicrob Agents Chemother 1996; 40: 839–845.

    PubMed  CAS  Google Scholar 

  27. Brown BA, Ward SC, Crist CJ, Mann LB, Wilson RW, Wallace, RJ Jr.In vitro activity of linezolid against multiple species ofNocardia: a new drug of choice for a difficult disease? InProgram and Abstracts of the 100th General Meeting of the American Society for Microbiology 2000, Los Angeles, California. Washington, DC: American Soc for Microbiology; 2000. Abstract no. U-57.

    Google Scholar 

  28. Brier ME, Stalker DJ, Aronoff GR, Batts DH, Ryan KK, O'Grady MAet al. Pharmacokinetics of linezolid in subjects with varying degrees of renal function and on dialysis [Abstract]. InProgram and Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, 24–27 September 1998, San Diego, California. Washington, DC: American Soc for Microbiology; 1998. Abstract no. A-54.

    Google Scholar 

  29. Plouffe JF. Emerging therapies for serious gram-positive bacterial infections: a focus on linezolid.Clin Infect Dis 2003;31(suppl 4):144–9.

    Google Scholar 

  30. Stevens DL, Smith LG, Bruss JB, McConnell-Martin MA, Duvall SE, Todd WMet al. Randomized comparison of linezolid (PNU-100766)vs oxacillin-dicloxacillin for treatment of complicated skin and soft tissue infections.Antimicrob Agents Chemother 2000;44:3408–13.

    Article  PubMed  CAS  Google Scholar 

  31. Rubinstein E, Cammarata S, Oliphant T, Wunderink R. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study.Clin Infect Dis 2001;32:402–412.

    Article  PubMed  CAS  Google Scholar 

  32. Cammarata SK, San Pedro GS, Timm JA, Hempsall KA, Todd WM, Oliphant THet al. Comparison of Linezolid versus ceftriaxone/cefpodoxime in the treatment of hospitalized patients with community-acquired pneumonia [Abstract]. In:Abstracts of the European Congress of Clinical Microbiology and Infectious Diseases, 28–31 May 2000, Stockholm, Sweden.

  33. Hyatt JM, Ballow CH, Forrest A, Turnak MR, Stalker DJ, Schentag JJ. Safety and efficacy of linezolid in the eradication of nasalStaphylococcus aureus. InProgram and Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, 24–27 September 1998, San Diego, California. Washington, DC: American Soc for Microbiology; 1998. Abstract no. A-4.

    Google Scholar 

  34. Rybak MJ, Hershberger E, Moldovan Tet al. In vitro activities of daptomycin, vancomycin, linezolid, and quinupristindalfopristin against staphylococci and enterococci, including vancomycin-intermediate and resistant strains.Antimicrob Agents Chemother 2000;44:1062–1066.

    Article  PubMed  CAS  Google Scholar 

  35. Cha R, Brown WJ, Rybak MJ. Bactericidal activities of daptomycin, quinupristin-dalfopristin, and linezolid agaist vancomycin resistantstaphylococcus aureus in anin vitro pharmacodynamic model with simulated endocardial vegetations.Antimicrob Agents Chemother 2003;47:3960–3963.

    Article  PubMed  CAS  Google Scholar 

  36. Snydman DR, Jacobus NV, McDermott LAet al. Comparativein vitro activities of daptomycin and vancomycin against resistant gram-positive pathogens.Antimicrob Agents Chemother 2000;44:3447–3450.

    Article  PubMed  CAS  Google Scholar 

  37. Vaudaux P, Francois P, Bisognano Cet al. Comparative efficacy of daptomycin and vancomycin in the therapy of experimental foreign body infection due to staphylococcus aureus.J Antimicrob Chemother 2003;52:89–95.

    Article  PubMed  CAS  Google Scholar 

  38. Hermsen ED, Hovde LB, Hotchkiss JRet al. Increased killing of staphylococci and streptococci by daptomycin compared with cefazolin and vancomycin in an in vitro peritoneal dialysate model.Antimicrob Agents Chemother 2003;47:3764–3767.

    Article  PubMed  CAS  Google Scholar 

  39. Thorne GM, Alder J. Daptomycin: A novel lipopeptide antibiotic.Clin Microbiol Newsletter 2002;24:33–40.

    Article  Google Scholar 

  40. Fuchs PC, Barry AL, Brown SD. In vitro bactericidal activity of daptomycin against staphylococci.J Antimicrob Chemother 2002;49:467–470.

    Article  PubMed  CAS  Google Scholar 

  41. Cubicin product package insert. Lenington MA, USA; Cubist Pharmaceuticals, Inc. September 2003

  42. Critchley IA, Blosser-Middleton RS, Jones MEet al. Baseline study to determine in vitro activities of daptomycin against gram-positive pathogens isolated in the United States in 2000–2001.Antimicrob Agents Chemother 2003;47:1689–1693.

    Article  PubMed  CAS  Google Scholar 

  43. Critchley IA, Draghi DC, Sahm DFet al. Activity of daptomycin against susceptible and multidrug-resistant grampositive pathogens collected in the SECURE study (Europe) during 2000–2001.J Antimicrob Chemother 2003;51:639–649.

    Article  PubMed  CAS  Google Scholar 

  44. Richter SS, Kealey DE, Murray CTet al. The in vitro activity of daptomycin against staphylococcus aureus and enterococcus species.J Antimicrob Chemother 2003;52:123–127.

    Article  PubMed  CAS  Google Scholar 

  45. Petersen PJ, Bradford PA, Weiss WJet al. In vitro and in vivo activities of tigecycline (GAR-936), daptomycin, and comparative antimicrobial agents against glycopeptide-intermediate staphylococcus aureus and other resistant grampositive pathogens.Antimicrob Agents Chemother 2002;46:2595–2601.

    Article  PubMed  CAS  Google Scholar 

  46. Barry AL, Fuchs PC, Brown SD.In vitro activities of daptomycin against 2,789 clinical isolates from 11 North American medical centers.Antimicrob Agents Chemother 2001;45:1919–1922.

    Article  PubMed  CAS  Google Scholar 

  47. King A, Phillips I. The in vitro activity of daptomycin against 514 gram-positive aerobic clinical isolates.J Antimicrob Chemother 2001;48:219–223.

    Article  PubMed  CAS  Google Scholar 

  48. Wise R, Andrews JM, Ashby JP. Activity of daptomycin against gram-positive pathogens: a comparison with other agents and the determination of a tentative breakpoint.J Antimicrob Chemother 2001;48:563–567.

    Article  PubMed  CAS  Google Scholar 

  49. National PBM Drug Monograph. Daptomycin (Cubicin). VHA Pharmacy Benefits Management Strategic Healthcare Group and Medical Advisory Panel. Available at http://www.pbm.va.gov/monograph/110280daptomycin.pdf

  50. Wise R, Andrews JM, Ashby JP. Activity of daptomycin against gram-positive pathogens: a comparison with other agents and the determination of a tentative breakpoint.J Antimicrob Chemother 2001;48:563–567.

    Article  PubMed  CAS  Google Scholar 

  51. Rybak MJ, Hershberger E, Moldovan Tet al. In vitro activities of daptomycin, vancomycin, linezolid, and quinupristin dalfopristin against staphylococci and enterococci, including vancomycin-intermediate and—resistant strains.Antimicrob Agents Chemother 2000;44:1062–1066.

    Article  PubMed  CAS  Google Scholar 

  52. Cha R, Grucz RG, Rybak MJ. Daptomycin dose-effect relationship against resistant gram-positive organisms.Antimicrob Agents Chemother 2003;47:1598–1603.

    Article  PubMed  CAS  Google Scholar 

  53. Bozdogan B, Esel D, Whitener Cet al. Antibacteria susceptibility of a vancomycin-resistant styaphylococcus aureus strain isolated at the Hershey Medical Center.J Antimicrob Chemother 2003;52:864–868.

    Article  PubMed  CAS  Google Scholar 

  54. Chang S, Sievert DM, Hageman JCet al. Infection with vancomycin-resistant staphylococcus aureus containing the vanA resistance gene.New Engl J Med 2003;348:1342–1347.

    Article  PubMed  Google Scholar 

  55. Sun HK, Kuti JL, Nicolau DP. Daptomycin a novel lipopeptide antibiotic for the treatment of resistant gram-positive infections.Formulary 2003;38:634–645.

    CAS  Google Scholar 

  56. Dvorchik BH, Brazier D, DeBruin MFet al. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects.Antimicrob Agents Chemother 2003;47:1318–1323.

    Article  PubMed  CAS  Google Scholar 

  57. Wise R, Gee T, Andrews JMet al. Pharmacokinetics and inflammatory fluid penetration of intravenous daptomycin in volunteers.Antimicrob Agents Chemother 2002;46:31–33.

    Article  PubMed  CAS  Google Scholar 

  58. Bryskier A. Ketolides-telithromycin, an example of a new class of antibacterial agents.Clin Microbiol Infect 2000 Dec;6(12):661–669.

    Article  PubMed  CAS  Google Scholar 

  59. Champney WS, Tober CL. Inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells by 11 different ketolide antibiotics.Curr Microbiol 1998Dec;37(6):418–425.

    Article  PubMed  CAS  Google Scholar 

  60. Douthwaite S, Hansen LH, Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA.Mol Microbiol 2000 Apr;36(1):183–93.

    Article  PubMed  CAS  Google Scholar 

  61. Barry AL, Fuchs PC, Brown SD.In vitro activities of the ketolide HMR 3647 against recent gram-positive clinical isolates and Haemophilus influenzae.Antimicrob Agents Chemother 1998 Aug;42(8):2138–40.

    PubMed  CAS  Google Scholar 

  62. Hoban DJ, Zhanel GG, Karlowsky JA.In vitro activity of the novel ketolide HMR 3647 and comparative oral antibiotics against Canadian respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.Diagn Microbiol Infect Dis 1999 Sep;35(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  63. Ackermann G, Rodloff AC. Drugs of the 21st century: telithromycin (HMR 3647)-the first ketolide.J Antimicrob Chemother 2003 Mar;51(3):497–511

    Article  PubMed  CAS  Google Scholar 

  64. Hoppe JE, Bryskier A.In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampin and rifapentine).Antimicrob Agents Chemother 1998 Apr;42(4):965–966.

    PubMed  CAS  Google Scholar 

  65. Bebear CM, Renaudin H, Bryskier A, Bebear C. Comparative activities of telithromycin (HMR 3647), levofloxacin, and other antimicrobial agents against human mycoplasmas.Antimicrob Agents Chemother 2000 Jul;44(7):1980–2.

    Article  PubMed  CAS  Google Scholar 

  66. Roblin PM, Hammerschlag MR.In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae.Antimicrob Agents Chemother 1998Jun;42(6):1515–1516.

    PubMed  CAS  Google Scholar 

  67. Edelstein PH, Edelstein MA.In vitro activity of the ketolide HMR 3647 (RU 6647) for Legionella spp., its pharmacokinetics in guinea pigs, and use of the drug to treat guinea pigs with Legionella pneumophila pneumonia.Antimicrob Agents Chemother 1999 Jan;43(1):90–5.

    PubMed  CAS  Google Scholar 

  68. Balfour JA, Figgitt DP. Telithromycin.Drugs 2001;61(6):815–829.

    Article  PubMed  CAS  Google Scholar 

  69. Barry AL, Fuchs PC, Brown SD. Relative potency of telithromycin, azithromycin and erythromycin against recent clinical isolates of gram-positive cocci.Eur J Clin Microbiol Infect Dis 2001 Jul;20(7):494–497.

    Article  PubMed  CAS  Google Scholar 

  70. Gustafsson I, Engstrand L, Cars O.In vitro pharmacodynamic studies of activities of ketolides HMR 3647 (Telithromycin) and HMR 3004 against extracellular or intracellular Helicobacter pylori.Antimicrob Agents Chemother 2001 Jan;45(1):353–355.

    Article  PubMed  CAS  Google Scholar 

  71. Rolain JM, Maurin M, Bryskier A, Raoult D.In vitro activities of telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetii, Bartonella henselae, Bartonella quintana, Bartonella bacilliformis, and Ehrlichia chaffeensis.Antimicrob Agents Chemother 2000 May;44(5):1391–1393.

    Article  PubMed  CAS  Google Scholar 

  72. Bhargava V, Lenfant B, Perret C, Pascual MH, Sultan E, Montay G. Lack of effect of food on the bioavailability of a new ketolide antibacterial, telithromycin.Scand J Infect Dis 2002;34(11):823–826.

    Article  PubMed  CAS  Google Scholar 

  73. Namour F, Wessels DH, Pascual MH, Reynolds D, Sultan E, Lenfant B. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses.Antimicrob Agents Chemother 2001 Jan;45(1):170–175.

    Article  PubMed  CAS  Google Scholar 

  74. Gehanno P, Sultan E, Passot V, Nabet P, Danon J, Romanet P, Attal P. Telithromycin (HMR 3647) achieves high and sustained concentrations in tonsils of patients undergoing tonsillectomy.Int J Antimicrob Agents 2003 May;21(5):441–445.

    Article  PubMed  CAS  Google Scholar 

  75. Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ. The ketolides: a critical review.Drugs 2002;62(12):1771–804.

    Article  PubMed  CAS  Google Scholar 

  76. Drusano G. Pharmacodynamic and pharmacokinetic considerations in antimicrobial selection: focus on telithromycin.Clin Microbiol Infect 2001;7Suppl 3:24–9.

    PubMed  CAS  Google Scholar 

  77. Bearden DT, Neuhauser MM, Garey KW. Telithromycin: an oral ketolide for respiratory infections.Pharmacotherapy 2001Oct;21(10):1204–1222.

    Article  PubMed  CAS  Google Scholar 

  78. Zhanel GG, Hoban DJ. Ketolides in the treatment of respiratory infections.Expert Opin Pharmacother 2002 Mar;3(3):277–297.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson AP. Telithromycin. Aventis Pharma.Curr Opin Investig Drugs 2001 Dec;2(12):1691–701.

    PubMed  CAS  Google Scholar 

  80. Norrby SR, Rabie WJ, Bacart P, Mueller O, Leroy B, Rangaraju M, Butticaz-Iroudayassamy E. Efficacy of short-course therapy with the ketolide telithromycin compared with 10 days of penicillin V for the treatment of pharyngitis/tonsillitis.Scand J Infect Dis 2001;33(12):883–890.

    Article  PubMed  CAS  Google Scholar 

  81. Postier RG, Green SL, Klein SR, Ellis-Grosse EJ, Loh E. Results of a multicenter, randomized, open-label efficacy and safety study of two doses of tigecycline for complicated skin and skin-structure infections in hospitalized patients.Clin Ther 2004;26:704–714.

    Article  PubMed  CAS  Google Scholar 

  82. Murray J, Wilson S, Klein S, Yellin A, Loh E. The clinical response to tigecycline in the treatment of complicated intra-abdominal infections in hospitalized patients, a phase 2 clinical trial [abstract L-739]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003:416.

    Google Scholar 

  83. Chopra I. Glycylcyclines: third-generation tetracycline antibiotics.Curr Opin Pharmacol 2001;1:464–469.

    Article  PubMed  CAS  Google Scholar 

  84. Zhanel GG, Homenuik K, Nichol Ket al. The glycylcyclines: a comparative review with the tetracyclines.Drugs 2004;64:63–88.

    Article  PubMed  CAS  Google Scholar 

  85. Projan SJ. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent.Pharmacotherapy 2000;20:219S-23S.

    Article  PubMed  CAS  Google Scholar 

  86. Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT.In vitro andin vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936).

  87. van Ogtrop ML, Andes D, Stamstad TJet al. In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria.Antimicrob Agents Chemother 2000;44:943–949.

    Article  PubMed  Google Scholar 

  88. Biedenbach DJ, Beach ML, Jones RN.In vitro antimicrobial activity of GAR-936 tested against antibiotic-resistant gram-positive blood stream infection isolates and strains producing extended-spectrum beta-lactamases.Diagn Microbiol Infect Dis 2001;40:173–177.

    Article  PubMed  CAS  Google Scholar 

  89. Betriu C, Rodriguez-Avial I, Sanchez BA, Gomez M, Alvarez J, Picazo JJ.In vitro activities of tigecycline (GAR-936) against recently isolated clinical bacteria in Spain.Antimicrob Agents Chemother 2002;46:892–895.

    Article  PubMed  CAS  Google Scholar 

  90. Goldstein EJ, Citron DM, Merriam CV, Warren Y, Tyrrell K. Comparative in vitro activities of GAR-936 against aerobic and anaerobic animal and human bite wound pathogens.Antimicrob Agents Chemother 2000;44:2747–51.

    Article  PubMed  CAS  Google Scholar 

  91. Milatovic D, Schmitz FJ, Verhoef J, Fluit AC. Activities of the glycylcycline tigecycline (GAR-936) against 1,924 recent European clinical bacterial isolates.Antimicrob Agents Chemother 2003;47:400–404.

    Article  PubMed  CAS  Google Scholar 

  92. Fritsche TR, Sader HS, Kirby JT, Jones RN.In vitro activity of the glycylcycline tigecycline tested against a worldwide collection of 10,127 contemporary staphylococci, streptococci and enterococci [abstract P937]. InProgram and abstracts of the 14th European Congress of Clinical Microbiology and Infectious Diseases (Prague). Basel:European Society of Clinical Microbiology and Infectious Diseases 2004:246.

    Google Scholar 

  93. Cercenado E, Cercenado S, Gomez JA, Bouza E.In vitro activity of tigecycline (GAR-936), a novel glycylcycline, against vancomycin-resistant enterococci and staphylococci with diminished susceptibility to glycopeptides.J Antimicrob Chemother 2003;52:138–139.

    Article  PubMed  CAS  Google Scholar 

  94. Low DE, Kreiswirth BN, Weiss K, Willey BM. Activity of GAR-936 and other antimicrobial agents against North American isolates ofStaphylococcus aureus.Int J Antimicrob Agents 2002;20:220–222.

    Article  PubMed  CAS  Google Scholar 

  95. Boucher HW, Wennersten CB, Eliopoulos GM.In vitro activities of the glycylcycline GAR-936 against gram-positive bacteria.Antimicrob Agents Chemother 2000;44:2225–229.

    Article  PubMed  CAS  Google Scholar 

  96. Kitzis MD, Ly A, Goldstein FW.In vitro activities of tigecycline (GAR-936) against multidrug-resistantStaphylococcus aureus andStreptococcus pneumoniae.Antimicrob Agents Chemother 2004;48:366–367.

    Article  PubMed  CAS  Google Scholar 

  97. Zhanel GG, Palatnick L, Nichol KA, Bellyou T, Low DE, Hoban DJ. Antimicrobial resistance in respiratory tractStreptococcus pneumoniae isolates: Results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002.Antimicrob Agents Chemother 2003;47:1867–1874.

    Article  PubMed  CAS  Google Scholar 

  98. Betriu C, Culebras E, Rodriguez-Avial I, Gomez M, Sanchez BA, Picazo JJ.In vitro activities of tigecycline against erythromycin-resistantStreptococcus pyogenes andStreptococcus agalactiae: mechanisms of macrolide and tetracycline resistance.Antimicrob Agents Chemother 2004;48:323–325.

    Article  PubMed  CAS  Google Scholar 

  99. Patel R, Rouse MS, Piper KE, Steckelberg JM. In vitro activity of GAR-936 against vancomycin-resistant enterococci, methicillin-resistantStaphylococcus aureus and penicillin-resistantStreptococcus pneumoniae.Diagn Microbiol Infect Dis 2000;38:177–179.

    Article  PubMed  CAS  Google Scholar 

  100. Petersen PJ, Bradford PA, Weiss WJ, Murphy TM, Sum PE, Projan SJ.In vitro andin vivo activities of tigecycline (GAR-936), daptomycin, and comparative antimicrobial agents against glycopeptide-intermediateStaphylococcus aureus and other resistant gram-positive pathogens.Antimicrob Agents Chemother 2002;46:2595–2601.

    Article  PubMed  CAS  Google Scholar 

  101. Gales AC, Silva JB, Andrade SS, Sader HS, Jones RN. In vitro activity of tigecycline, a new glycylcycline, tested against 1,326 clinical bacterial strains isolated from the Latin American region [abstract E-1537]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003:257.

    Google Scholar 

  102. Deshpande LM, Gales AC, Jones RN. GAR-936 (9-t-butylglycylamido-minocycline) susceptibility test development for streptococci,Haemophilus influenzae, andNeisseria gonorrhoeae: preliminary guidelines and interpretive

  103. Johnson B, Stevens T, Bouchillon Set al. Tigecycline (GAR-936) a novel glycyclcycline with promising anti-staphylococcal activity [abstract E-1536]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003; 257.

    Google Scholar 

  104. Bozdogan B, Esel D, Whitener C, Browne FA, Appelbaum PC. Antibacterial susceptibility of a vancomycin-resistantStaphylococcus aureus strain isolated at the Hershey Medical Center.J Antimicrob Chemother 2003;52:864–868.

    Article  PubMed  CAS  Google Scholar 

  105. Betriu C, Rodriguez-Avial I, Sanchez BA, Gomez M, Picazo JJ. Comparativein vitro activities of tigecycline (GAR-936) and other antimicrobial agents againstStenotrophomonas maltophilia.J Antimicrob Chemother 2002;50:758–759.

    Article  PubMed  CAS  Google Scholar 

  106. Henwood CJ, Gatward T, Warner Met al. Antibiotic resistance among clinical isolates ofAcinetobacter in the UK, andin vitro evaluation of tigecycline (GAR-936).J Antimicrob Chemother 2002;49:479–487.

    Article  PubMed  CAS  Google Scholar 

  107. Cercenado E, Cercenado S, Bouza E.In vitro activities of tigecycline (GAR-936) and 12 other antimicrobial agents against 90 Eikenella corrodens clinical isolates.Antimicrob Agents Chemother 2003;47:2644–2645.

    Article  PubMed  CAS  Google Scholar 

  108. Johnson B, Stevens T, Bouchillon Set al. In vitro study of tigecycline against 776 clinical isolates of non-Enterobacteriaceae from hospitals across Europe [abstract 3311]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC:American Society for Microbiology, 2003;206.

    Google Scholar 

  109. Johnson B, Stevens T, Bouchillon Set al. In vitro antibacterial activity of tigecycline a novel glycylcycline against clinical isolates of Enterobacteriaceae [abstract 3464]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC:American Society for Microbiology, 2003:206–207.

    Google Scholar 

  110. Edlund C, Nord CE.In vitro susceptibility of anaerobic bacteria to GAR-936, a new glycylcycline.Clin Microbiol Infect 2000;6:159–63.

    Article  PubMed  CAS  Google Scholar 

  111. Wallace RJ Jr, Brown-Elliott BA, Crist CJ, Mann L, Wilson RW. Comparison of thein vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria.Antimicrob Agents Chemother 2002;46:31643167.

    Article  CAS  Google Scholar 

  112. Rhomberg PR, Jones RN.In vitro activity of 11 antimicrobial agents, including gatifloxacin and GAR936, tested against clinical isolates ofMycobacterium marinum.Diagn Microbiol Infect Dis 2002;42:145–147.

    Article  PubMed  CAS  Google Scholar 

  113. Roblin PM, Hammerschlag MR.In vitro activity of GAR-936 againstChlamydia pneumoniae andChlamydia trachomatis.Int J Antimicrob Agents 2000;16:61–63.

    Article  PubMed  CAS  Google Scholar 

  114. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after a single and multiple doses in healthy subjects.Antimicrob Agents Chemother 2005;49:220–229.

    Article  PubMed  CAS  Google Scholar 

  115. Troy SM, Muralidharan G, Micalizzi M, Mojavarian P, Salacinski L, Raible D. The effects of renal disease on the pharmacokinetics of tigecycline (GAR-936) [abstract A-43]. InProgram and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003:5.

    Google Scholar 

  116. Meagher AK, Cirincione BB, Liolios KA, Troy S, Ambrose PG. Pharmacokinetics of tigecycline in healthy adult volunteers and in subjects with renal impairment [abstract P1023]. InProgram and abstracts of the 14th European Congress of Clinical Microbiology and Infectious Diseases (Prague). Basel: European Society of Clinical.

  117. Tombs NL. Tissue distribution of Gar-936, a broad-spectrum antibiotic, in male rats. InProgram and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco). Washington, DC: American Society for Microbiology, 1999:26.

    Google Scholar 

  118. Fang GD, Weiss WJ, Scheld WM. Comparative efficacy of GAR-936 (GAR), a novel glycylcycline, alone and in combination with vancomycin against highly penicillin-resistantStreptococcus pneumoniae (PRSP) experimental meningitis in rabbits [abstract 868]. InProgram and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy (Toronto). Washington, DC: American Society for Microbiology, 2000;51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basim Asmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Tatari, H., Abdel-Haq, N., Chearskul, P. et al. Antibiotics for treatment of resistant gram-positive coccal infections. Indian J Pediatr 73, 323–334 (2006). https://doi.org/10.1007/BF02825827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825827

Key words

Navigation