Skip to main content
Log in

Turbine mixer fundamentals and scale-up method at the Port Nickel Refinery

  • Process Control
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The Port Nickel Refinery at Braithwaite, Louisiana is being rehabilitated and expanded to achieve a capacity of 80 million pounds per year of nickel. The atmospheric leaching of granulated and ground matte with recirculated and aerated electrolyte from the copper tankhouse is one of the first steps in the Port Nickel flowsheet. An investigation was undertaken to develop the design parameters necessary for the commercial scale-up of this leach circuit. Mechanical factors to be specified include tank geometry, impeller type, and froth handling capability. Also needed for scale-up was quantitative data showing the effect of mixer power and gas input rate on the rate of oxygen transfer. During the leaching period, the rate mechanism changed from oxygen diffusion control to chemical rate control which necessitated careful correlation of the kinetic data with mixer scale-up parameters. The scaled up system calls for a co-current five stage leaching train. Use of a single turbine impeller on a vertical central shaft provides sufficient power for off-bottom solids suspension while providing the required oxygen mass transfer rate. Radial impellers are provided for the first three tanks in which oxygen transfer is rate controlling, and axial impellers for the last two tanks where hydrolysis of basic copper sulfate is the rate controlling factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Toivanen and P. O. Grongvist.C.I.M. Bulletin, June 1964, p. 653.

  2. H. Saarinen:Metall-Verlaz-Berlin, Sept. 1971, pp. 1–6.

  3. Z. R. Llanos, P. B. Queneau, and R. S. Rickard:C.I.M. Bulletin, February 1974, p. 74.

  4. C. Benjamin, Y. Lu, and W. F. Graydon:Can. J. Chem., 1954, vol. 32, p. 953.

    Google Scholar 

  5. E. M. Wadsworth and D. R. Wadia:J. Metals, June 1955, p. 755.

  6. D. P. Gregory and A. C. Riddiaforal:J. Electrochem. Soc., 1960, vol. 107:12, p. 950.

    Article  CAS  Google Scholar 

  7. W. R. Cook, R. T. Quenett, and D. M. Shefford: “Current Practice at the Thompson Nickel Refinery,” AIME Annual Meeting, Chicago, 1973. (TMS Paper Selection No. A73-78.)

  8. G. Nakazawa, A. Suetsuna, and T. Shimogarawa: “Development of the Pressure Oxidation Leaching of High Grade Nickel Matte,” AIME Annual Meeting, Chicago, 1973.

  9. L. V. Chugaev:Russ. J. Inorg. Chem., 1965, vol. 10, no. 8, p. 969.

    Google Scholar 

  10. L. V. Chugaev:Izv. Vyssh. Nchea. Zabed. Tsvet. Met., 1968, vol. 11, no. 2, p. 24.

    CAS  Google Scholar 

  11. D. P. Shuler: U.S. Pat. 967,072, Aug. 9, 1910.

  12. G. W. Pawel and E. A. Rekate: U.S. Pat. 1,276,809. Aug. 27, 1918.

  13. G. Hugland: U.S. Pat. 1,375,631. April 19, 1921.

  14. G. Hugland: Canadian Patent 226,153. Nov. 21, 1922.

  15. R. L. Peek and T. F. Torell: U.S. Pat. 1,569, 137. Jan. 12, 1926.

  16. N. V. Hybinette: U.S. Pat. 1,577,422. March 15, 1926.

  17. W. J. Harshaw and G. L. Homer: U.S. Pat. 1,729,423. Sept. 24, 1929.

  18. F. E. Lathe: U.S. Pat. 1,756,092. April 29, 1930.

  19. G. Hamprechtet al: U.S. Pat. 2,223,239. Nov. 26, 1941.

  20. H. Schlectet al: U. S. Pat. 2,753,259. July 3, 1956.

  21. Th. N. Zwietering:Chem. Eng. Sci., 1958, vol. 8, p. 224.

    Google Scholar 

  22. S. Narayanan, V. K. Bhatia, D. K. Guha, and M. N. Rao:Chem. Eng. Sci., 1969, vol. 24, p. 233.

    Google Scholar 

  23. H. C. Foust, D. E. Mack, and J. H. Rushton:Ind. Eng. Chem., 1944, vol. 36, no. 6, p. 517.

    Article  CAS  Google Scholar 

  24. J. H. Rushton and J. Y. Oldshue:Chem. Eng. Progr., April–May 1953, vol. 49, no. 4–5.

  25. N. H. Parker:Chem. Eng., 1964, vol. 71, no. 12, p. 165.

    CAS  Google Scholar 

  26. R. L. Bates, P. L. Fondy, and R. P. Corpstein:Ind. Eng. Chem. Proc. Des. Dev., 1963, vol. 2, no. 4, p. 310.

    Article  CAS  Google Scholar 

  27. J. Y. Oldshue:Ind. Eng. Chem., 1969, vol. 61, no. 9, p. 79.

    Article  CAS  Google Scholar 

  28. N. H. Parker, G. Gutzeit, and J. G. Papailias:Mining Eng., 1956, p. 288.

  29. J. H. Rushton and L. H. Mahoney: “Fundamentals of Mixing and Agitation with Applications to Extractive Metallurgy,” presented at the Annual Meeting of AIME, New York, N.Y., 1954.

  30. D. L. Johnson, H. Saito, J. D. Polejes, and O. A. Hougen:AIChE J., 1957, vol. 3, no. 3, p. 411.

    Article  CAS  Google Scholar 

  31. J. Y. Oldshue:Biotech. Bioeng., 1966, vol. 8, p. 3.

    Article  Google Scholar 

  32. J. Y. Oldshue:Chem. Eng. Progr., 1970, vol. 66, no. 11, p. 73.

    Google Scholar 

  33. J. Y. Oldshue:Chem. Proc. Eng., 1966, vol. 4, p. 183.

    Google Scholar 

  34. J. Y. Oldshue:Ind. Eng. Chem., 1956, vol. 48, no. 12, p. 2194.

    Article  CAS  Google Scholar 

  35. E. O. Karow, W. H. Bartholemew, and M. R. Sfat:Agricultural and Food Chem., 1953, vol. 1, no. 4, p. 302.

    Article  CAS  Google Scholar 

  36. C. M. Copper, G. A. Fernstrom, and S. A. Miller:Ind. Eng. Chem., 1944, vol. 36, no. 6, p. 504.

    Article  Google Scholar 

  37. N. Arbiter, C. C. Harris, and J. Steininger:SME Trans. AIME, 1964, p. 70.

  38. J. H. Rushton, J. B. Gallagher, and J. Y. Oldshue:Chem. Eng. Progr., 1956, vol. 52, no. 8, p. 319.

    CAS  Google Scholar 

  39. G. H. Leamy:Chem. Eng., 1973, vol. 80, no. 23, p. 115.

    CAS  Google Scholar 

  40. P. H. Calderbank:Trans. Inst. Chem. Eng., 1958, vol. 36, p. 443.

    Google Scholar 

  41. W. W. Eckenfelder, Jr. and D. J. O'Connor:Biological Waste Treatment, pp. 76–112, Macmillan Co., New York, 1961.

    Google Scholar 

  42. D. R. Raymond and S. A. Zieminski:AIChE J., 1971, vol. 17, no. 1, p. 57.

    Article  CAS  Google Scholar 

  43. S. A. Sieminski, M. M. Caron, and R. B. Blackmore:Ind. Eng. Chem. Fund., 1967, vol. 62, no. 2, p. 233.

    Article  Google Scholar 

  44. Mixer scale-up calculations and engineering were performed by the Mixing Equipment Co. of Rochester, N.Y.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queneau, P.B., Jan, R.J., Rickard, R.S. et al. Turbine mixer fundamentals and scale-up method at the Port Nickel Refinery. Metall Trans B 6, 149–157 (1975). https://doi.org/10.1007/BF02825689

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825689

Keywords

Navigation