Skip to main content
Log in

Diffusion-limited sulfidation of wustite

  • Solid State Reactions
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The sulfidation of wustite in H2S−H2O−H2−Ar atmospheres has been studied at temperatures of 700, 800, and 900°C with thermogravimetric techniques. Polycrystalline wustite wafers were equilibrated in a flowing H2O−H2−Ar gas stream and then sulfidizedin situ. During an initial transient stage a protective layer of FeS formed on the sample, and an intermediate layer of Fe3O4 formed between the FeO and FeS layers. Subsequently, the reaction followed a parabolic rate law. The parabolic rate constant varied from 0.22×10−2 mg2 cm−4 min−1 at 700°C to 6.5×10−2 mg2 cm−4 min−1 at 900°C. The reaction rate was limited by the diffusion of iron through the intermediate Fe3O4 layer which grew concurrently with the FeS layer and at the expense of the FeO core. After the FeO core was completely converted to Fe3O4, the process entered a passive stage during which no further mass changes could be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Goebel, F. S. Pettit, and G. W. Goward:Met. Trans., 1973, vol. 4, pp. 261–78.

    Article  CAS  Google Scholar 

  2. K. Natesan and W. O. Philbrook:Trans. TMS-AIME, 1969, vol. 245, pp. 2243–50.

    CAS  Google Scholar 

  3. T. B. Lindemer, M. D. Allen, and J. M. Leitnaker:J. Amer. Ceram. Soc., 1969, vol. 52, pp. 233–41.

    Article  CAS  Google Scholar 

  4. R. H. Borgwardt:Environ. Sci. and Tech., 1970, vol. 4, pp. 59–63.

    Article  Google Scholar 

  5. L. A. Ruth, A. M. Squires, and R. A. Graff:Environ. Sci. and Tech., 1972, vol. 6, pp. 1009–1014.

    Article  CAS  Google Scholar 

  6. C. Wagner:Atom Movements, pp. 153–73, American Society for Metals, Metals Park, Ohio, 1951.

    Google Scholar 

  7. L. S. Darken and R. W. Gurry:J. Amer. Chem. Soc., 1945, vol. 67, pp. 1398–1412.

    Article  CAS  Google Scholar 

  8. P. Vallet and P. Raccah:Mem. Sci. Rev. Met., 1965, vol. 62, pp. 1–29.

    CAS  Google Scholar 

  9. B. Swaroop and J. B. Wagner, Jr.:Trans. TMS-AIME, 1967, vol. 239, pp. 1215–18.

    CAS  Google Scholar 

  10. H. F. Rizzo, R. S. Gordon, and I. B. Cutler:Mass Transport in Oxides, pp. 129-42, NBS Special Publication 296, 1968.

  11. F. E. Rizzo and J. V. Smith:J. Phys. Chem., 1968, vol. 72, pp. 485–88.

    Article  CAS  Google Scholar 

  12. R. A. Meussner, L. E. Richards, and C. T. Fujii: Naval Research Laboratory, Washington, D.C.,Report of NRL Progress, December 1965, pp. 26–28.

  13. R. J. Ackermann and R. W. Sandford, Jr.: Argonne National Laboratories, Argonne, III., Tech. Rep. ANL-7250, 1966.

  14. L. Himmel, R. Mehl, and C. E. Birchenall:Trans. AIME, 1953, vol. 197, pp. 827–43.

    Google Scholar 

  15. R. E. Carter and F. D. Richardson:Trans. AIME, 1954, vol. 200, pp. 1244–57.

    CAS  Google Scholar 

  16. P. Desmerescaux and P. Lacombe:Mem. Sci. Rev. Met., 1963, vol. 60, pp. 899–906.

    Google Scholar 

  17. P. Hembree and J. B. Wanger, Jr.:Trans. TMS-AIME, 1969, vol. 245, pp. 1547–52.

    CAS  Google Scholar 

  18. H. Schmalzried:Z. Physik. Chem. N.F., 1962, vol. 31, pp. 184–97.

    CAS  Google Scholar 

  19. J. E. Castle and P. L. Surman:J. Phys. Chem., 1967, vol. 17, pp. 4255–59.

    Article  Google Scholar 

  20. P. Toulmin, III, and P. B. Barton, Jr.:Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 641–671.

    Article  CAS  Google Scholar 

  21. T. Rosenqvist:J. Iron Steel Inst., 1954, vol. 176, pp. 37–56.

    CAS  Google Scholar 

  22. W. Burgmann, G. Urbain, and M. G. Frohberg:Mem. Sci. Rev. Met., 1968, vol. 65, pp. 567–578.

    CAS  Google Scholar 

  23. M. Nagamori and M. Kameda:Trans. Jap. Inst. Met., 1968, vol. 9, pp. 187–94.

    CAS  Google Scholar 

  24. K. Niwa and T. Wada:Physical Chemistry of Process Metallurgy, Part 2, G. St. Pierre, ed., pp. 945–61, Interscience, 1961.

    Google Scholar 

  25. E. T. Turkdogan:Trans. TMS-AIME, 1968, vol. 242, pp. 1665–72.

    CAS  Google Scholar 

  26. R. H. Condit and C. E. Birchenall: Air Force Office of Scientific Research Tech. Note 60-245, Contract No. AF-49(638)-533, Princeton University, 1960.

  27. R. R. Hobbins, Jr.: Ph.D. Thesis, Univesity of Delaware, 1969.

  28. R. A. Meussner and C. E. Birchenall:Corrosion, 1957, vol. 13, pp. 677–89.

    Google Scholar 

  29. D. C. Hilty and W. Crafts:Trans. AIME, 1952, vol. 194, pp. 1307–12.

    Google Scholar 

  30. J. M. Dahl and L. H. Van Vlack:Trans. TMS-AIME, 1965, vol. 233, pp. 2–7.

    CAS  Google Scholar 

  31. E. T. Turkdogan and G. J. W. Kor:Met. Trans., 1971, vol. 2, pp. 1561–69.

    CAS  Google Scholar 

  32. L. S. Darken and R. W. Gurry:Met. Trans., 1971, vol. 2, pp. 1569–70.

    Google Scholar 

  33. G. J. W. Kor and E. T. Turkdogan:Met. Trans., 1971, vol. 2, pp. 1571–78.

    CAS  Google Scholar 

  34. T. Leonard and G. St. Pierre: Ohio State University, Columbus, Ohio, private communication.

  35. E. T. Turkdogan, W. M. McKewan, and L. Zwell:J. Phys. Chem., 1965, vol. 69, pp. 327–34.

    Article  CAS  Google Scholar 

  36. F. S. Pettit, R. Yinger, and J. B. Wagner, Jr.:Acta Met., 1960, vol. 8, pp. 617–23.

    Article  CAS  Google Scholar 

  37. F. S. Pettit and J. B. Wagner, Jr.:Acta Met., 1964, vol. 12, pp. 35–40.

    Article  CAS  Google Scholar 

  38. M. H. Davies, M. T. Simnad, and C. E. Birchenall:Trans. AIME, 1951, vol. 191, pp. 889–97.

    Google Scholar 

  39. K. Hauffe and A. Rahmel:Zeit. fur Physik. Chemie, 1952, vol. 199, pp. 152–69.

    CAS  Google Scholar 

  40. W. L. Worrell and E. T. Turkdogan:Trans. TMS-AIME, 1968, vol. 242, pp. 1673–78.

    CAS  Google Scholar 

  41. A. Rahmel:Werkstoffe and Korrosion, 1972, vol. 23, pp. 95–98.

    Article  CAS  Google Scholar 

  42. A. Rahmel:Werkstoffe and Korrosion, 1972, vol. 23, pp. 272–78.

    Article  CAS  Google Scholar 

  43. N. Birks:Metallurgical Chemistry, edited by E. Kubaschewski, Iron and Steel Institute, London, 1972.

    Google Scholar 

  44. P. Kofstad:High Temperature Oxidation of Metals, p. 116, John Wiley and Sons, New York, 1966.

    Google Scholar 

  45. E. A. Gulbransen and K. F. Andrew:Vacuum Microbalance Techniques, Plenum Press, 1961, vol. 1, pp. 9–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

SCOTT McCORMICK, formerly Graduate Student, Purdue University is currently Assistant Professor, Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Illinois 60616.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, S., Dayananda, M.A. & Grace, R.E. Diffusion-limited sulfidation of wustite. Metall Trans B 6, 55–61 (1975). https://doi.org/10.1007/BF02825678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825678

Keywords

Navigation