Skip to main content

Advertisement

Log in

K-ras mutation and pancreatic adenocarcinoma

  • State-of-the-Art
  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Conclusion

Pancreatic adenocarcinoma, the human tumor with the highest incidence of K-ras mutations, is one of the leading causes of cancer death and has a very poor prognosis. Over the past few years, a molecular genetic profile of pancreatic cancer has started to emerge: K-ras mutations in at least 90% of cases, MTS1 alterations (somatic mutations and homozygous deletions) in 80%, p53 mutations in about 70%, as well as multiple sites of allelic loss in cancer cells. The detection of K-ras mutations is done by using one of several PCR-based methods. A modified allele-specific ligation assay recently described appears particularly simple and reproducible. The possibility of pancreatic ductal lesions being the early precursors of pancreatic cancer has gained support from the finding of frequent K-ras mutations in these lesions. Although K-ras mutations are a defining event in pancreatic ductal carcinogenesis, it is unclear in which genetic context they occur. K-ras mutations as markers of cancer cells have been detected in clinical specimens from patients, including stool and blood, raising the possibility of early diagnosis. In addition K-ras can be a molecular target for therapeutic intervention, as illustrated with the use of farnesylation inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warshaw AL, Castillo CFD. Pancreatic carcinoma.N Engl J Med 1991; 326: 455–465.

    Article  Google Scholar 

  2. Cameron JL, Crist DW, Sitzmann JV, Hruban RH, Boitnott JK, Seidler AJ, Coleman J. Factors influencing survival after pancreatoduodenectomy for pancreatic cancer.Ann Surg 1992; 161: 120–125.

    Google Scholar 

  3. Sidransky D, Tokino T, Hamilton SR, Kinzler KW, Levin B, Frost P, Vogelstein B. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors.Science 1992; 256: 102–105.

    Article  PubMed  CAS  Google Scholar 

  4. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988; 53: 549–554.

    Article  PubMed  CAS  Google Scholar 

  5. Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL. K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas.Nucleic Acids Res 1988; 16: 7773–7782.

    Article  PubMed  CAS  Google Scholar 

  6. Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma from other periampullary carcinomas by analysis of mutations in the Kirsten-ras oncogene.Ann Surg 1991; 214: 657–662.

    Article  PubMed  CAS  Google Scholar 

  7. Grunewald K, Lyons J, Frohlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas.Int J Cancer 1989; 43: 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  8. Hruban RH, van Mansfeld ADM, Offerhaus GJA, van Weering DHJ, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization.Am J Pathol 1993; 143: 545–554.

    PubMed  CAS  Google Scholar 

  9. Seymour AB, Hruban RH, Redston MS, Caldas C, Powell SM, Kinzler KW, Yeo CJ, Kern SE. Allelotype of pancreatic adenocarcinoma.Cancer Res 1994; 54: 2761–2764.

    PubMed  CAS  Google Scholar 

  10. Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, Kern SE. p53 mutations in pancreatic adenocarcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions.Cancer Res 1994; 54: 3025–3033.

    PubMed  CAS  Google Scholar 

  11. Pellegata NS, Sessa F, Renault B, Bonato B, Leone BE, Solcia E, Ranzani GN. K-ras and p53 gene mutations in pancreatic cancers: ductal and nonductal tumors progress through different lesions.Cancer Res 1994; 54: 1556–1560.

    PubMed  CAS  Google Scholar 

  12. Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Ando H, Yanagisawa A, Tsuchiya E, Kato Y, Nakamura Y. Frequent somatic mutations of the APC gene in human pancreatic cancer.Cancer Res 1993; 52: 6696–6698.

    Google Scholar 

  13. Hohne MW, Halatsch ME, Kahl GF, Weinel RJ. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma.Cancer Res 1993; 52: 2616–2619.

    Google Scholar 

  14. Han H-J, Yanagisawa A, Kato Y, Park J-G, Nakamura Y. Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer.Cancer Res 1993; 53: 5087–5089.

    PubMed  CAS  Google Scholar 

  15. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE. Frequent somatic mutations and homozygous deletions of the p16(MTS1) gene in pancreatic adenocarcinoma.Nature Gen 1994; 8: 27–32.

    Article  CAS  Google Scholar 

  16. Bos JL. The ras gene family and human carcinogenesis.Mutat Res 1988; 195: 255–271.

    PubMed  CAS  Google Scholar 

  17. Bos JL. ras oncogenes in human cancer: a review.Cancer Res 1989; 49: 4682–4689.

    PubMed  CAS  Google Scholar 

  18. Smith SS. Species-specific differences in tumorigenesis and senescence.Trends Gen 1994; 10: 305, 306.

    Article  CAS  Google Scholar 

  19. Nagata Y, Abe M, Motoshima K, Nakayama E, Shiku H. Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer in Japanese.Jpn J Cancer Res 1989; 81: 135–140.

    Google Scholar 

  20. Motojima K, Urano T, Nagata Y, Shiku H, Tsurifune T, Kanematsu T. Detection of point mutations in the Kirstenras oncogene provides evidence for the multicentricity of pancreatic carcinoma.Ann Surg 1993; 217: 138–143.

    Article  PubMed  CAS  Google Scholar 

  21. Hirai H, Okabe T, Anraku Y, Fusiwava M, Urabe A, Takaku F. Activation of the c-K-ras oncogene in a human pancreas carcinoma.Bioch Biophys Res Commun 1985; 127: 168–174.

    Article  CAS  Google Scholar 

  22. Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene.Nature 1982; 297: 474–478.

    Article  PubMed  CAS  Google Scholar 

  23. Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes.Nature 1982; 298: 337–341.

    Article  Google Scholar 

  24. Der CJ, Krontiris TG, Cooper GM. Transforming activity of human tumor DNAs.Proc Natl Acad Sci USA 1982; 79: 3637–3640.

    Article  PubMed  CAS  Google Scholar 

  25. Winter E, Yamamoto F, Almoguera C, Perucho M. A method to detect and characterize point mutations in transcribed genes: amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells.Proc Natl Acad Sci USA 1985; 82: 7575–7579.

    Article  PubMed  CAS  Google Scholar 

  26. Bos JL, Verlaan-de Vries M, Jansen AM, Veeneman GH, van Boom JH, Van der Erb AJ. Three different mutations in codon 61 of the human N-ras gene detected by synthetic oligonucleotide hybridization.Nucleic Acids Res 1984; 12: 9155–9163.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Cadavid NF, Zhou D, Battifora H, Bar-Eli M, Cline MJ. Direct sequencing analysis of exon 1 of the c-K-ras gene shows a low frequency of mutations in human pancreatic adenocarcinomas.Oncogene 1989; 4: 1137–1140.

    PubMed  CAS  Google Scholar 

  28. Verlaan-de-Vries M, Bogaard ME, van den Elst H, van Boom JH, van der Eb AJ, Bos JL. A dot-blot screening procedure for mutated ras oncogenes using synthetic oligodesoxynucleotides.Gene 1986; 50: 313–320.

    Article  PubMed  CAS  Google Scholar 

  29. Stork P, Loda M, Bosari S, Wiley B, Poppenhusen K, Wolfe H. Detection of K-ras mutations in pancreatic and hepatic neoplasms by non-isotopic mismatched polymerase chain reaction.Oncogene 1991; 6: 857–862.

    PubMed  CAS  Google Scholar 

  30. Kahn SM, Jiang W, Culbertson TA, Weinstein IB, Williams GM, Tomita N, Ronai Z. Rapid and sensitive non-radioactive detection of mutant K-ras genes via “enriched” PCR amplification.Oncogene 1991; 6: 1079–1083.

    PubMed  CAS  Google Scholar 

  31. Levi S, Urbano-Ispizua A, Gill R, Thomas DM, Gilbertson J, Foster C, Marshall CJ. Multiple K-ras codon 12 mutations in cholangiocarcinomas demonstrated with a sensitive polymerase chain reaction technique.Cancer Res 1991; 51: 3497–3502.

    PubMed  CAS  Google Scholar 

  32. van Mansfeld ADM, Bos JL. PCR-based approaches for detection of mutatedras genes.PCR Methods Applications 1992; 1: 211–216.

    Google Scholar 

  33. Jen J, Powell SM, Papadopoulos N, Smith KJ, Hamilton SR, Vogelstein B, Kinzler KW. Molecular determinants of dysplasia in colorectal lesions.Cancer Res 1994; 54: 5523–5526.

    PubMed  CAS  Google Scholar 

  34. Mariyama M, Kishi K, Nakamura K, Obata H, Nishimura S. Jap frequency and types of point mutation at the 12th codon of the c-Ki-ras gene found in pancreatic cancers from Japanese patients.J Cancer Res 1989; 80: 622–626.

    CAS  Google Scholar 

  35. Cubilla AL, Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer.Cancer Res 1976; 36: 2690–2698.

    PubMed  CAS  Google Scholar 

  36. Kozuka S, Sassa R, Taki T, Masamoto K, Nagasawa S, Saga S, Hasegawa K, Takeuchi M. Relation of pancreatic duct hyperplasia to carcinoma.Cancer 1979; 43: 1418–1428.

    Article  PubMed  CAS  Google Scholar 

  37. Sommers SC, Murphy SA, Warren S. Pancreatic duct hyperplasia and cancer.Gastroenterology 1954; 27: 629–640.

    PubMed  CAS  Google Scholar 

  38. Kloppel G, Bommer G, Ruckert K, Seifert G. Intraductal proliferation in the pancreas and its relationship to human and experimental carcinogenesis.Virchows Arch A Pathol Anat Histol 1980; 387: 221–233.

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa A, Ohtake K, Ohashi K, Hori M, Kitagawa T, Sugano H, Kato Y. Frequent Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation.Cancer Res 1993; 53: 953–956.

    PubMed  CAS  Google Scholar 

  40. Nowell PC. The clonal evolution of tumor cell populations.Science 1976; 194: 23–28.

    Article  PubMed  CAS  Google Scholar 

  41. Kern SE. Clonality: more than just a tumor-progression model.J Natl Cancer Inst 1993; 85: 1020, 1021.

    Article  PubMed  CAS  Google Scholar 

  42. Caldas C, Kern SE, Hruban RH. K-ras mutations in pancreatic ductal cell hyperplasias.Ann Oncol 1994; 5(8): 75 (abst).

    Google Scholar 

  43. DiGiuseppe JA, Hruban RH, Offerhaus GJA, Clement MJ, van der Berg FM, Cameron JL, van Mansfeld ADM. Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma.Am J Pathol 1994; 144: 889–895.

    PubMed  CAS  Google Scholar 

  44. Tada M, Omata M, Ohto M. ras gene mutations in intraductal papillary neoplasms of the pancreas.Cancer 1990; 67: 634–637.

    Article  Google Scholar 

  45. Yanagisawa A, Kato Y, Ohtake K, Kitagawa T, Ohashi K, Hori M, Takagi K, Sugano H. c-Ki-ras point mutations in ductectatic-type mucinous cystic neoplasms of the pancreas.Jpn J Cancer Res 1991; 82: 1057–1060.

    PubMed  CAS  Google Scholar 

  46. Cerny WL, Mangold KA, Scarpelli DG. K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster.Cancer Res 1992; 52: 4507–4513.

    PubMed  CAS  Google Scholar 

  47. Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 bladder carcinoma oncogene.Nature 1982; 300: 149–152.

    Article  PubMed  CAS  Google Scholar 

  48. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated K-ras.Science 1993; 260: 85–87.

    Article  PubMed  CAS  Google Scholar 

  49. Finney RE, Bishop JM. Predisposition for neoplastic transformation caused by gene replacement of H-ras 1.Science 1993; 260: 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  50. Levi DB, Smith KJ, Beazer-Barclay Y, Hamilton SR, Vogelstein B, Kinzler KW. Inactivation of both APC alleles in human and mouse tumors.Cancer Res 1994; 54: 5953–5958.

    Google Scholar 

  51. Fearon E, Vogelstein B. A genetic model for colorectal tumorigenesis.Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  52. Pretlow TP, Brasitus TA, Fulton C, Cheyer C, Kaplan EL. K-ras mutations in putative preneoplastic lesions in human colon.J Natl Cancer Inst 1993; 85: 2004–2007.

    Article  PubMed  CAS  Google Scholar 

  53. Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice.Cell 1989; 48: 1023–1034.

    Article  Google Scholar 

  54. Fujii H, Egami H, Chaney W, Pour P, Pelling J. Pancreatic adenocarcinomas induced in Syrian hamsters byN-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog 1990; 3: 296–301.

    Article  PubMed  CAS  Google Scholar 

  55. Shibata D, Almoguera C, Forrester K, Dunitz J, Martin SE, Cosgrove MM, Perucho M, Arnheim N. Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas.Cancer Res 1990; 50: 1279–1283.

    PubMed  CAS  Google Scholar 

  56. Tada M, Omata M, Ohto M. Clinical applications of ras gene mutation for diagnosis of pancreatic adenocarcinoma.Gastroenterology 1991; 100: 233–238.

    PubMed  CAS  Google Scholar 

  57. Urban T, Ricci S, Grange J-D, Lacave R, Boudghene F, Breittmayer F, Languille O, Roland J, Bernaudin J-F. Detection of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas.J Natl Cancer Inst 1993; 85: 2008–2012.

    Article  PubMed  CAS  Google Scholar 

  58. Tada M, Omata M, Kawai S, Saisho H, Ohto M, Saiki RK, Sninsky JJ. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma.Cancer Res 1993; 53: 2472–2474.

    PubMed  CAS  Google Scholar 

  59. Watanabe H, Sawabu N, Ohta H, Satomura Y, Yamakawa O, Motoo Y, Okai T, Takahashi H, Wakabayashi T. Identification of K-ras oncogene mutations in the pure pancreatic juice of patients with ductal pancreatic cancers.Jpn J Cancer Res 1993; 84: 961–965.

    PubMed  CAS  Google Scholar 

  60. Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia.Cancer Res 1994; 54: 3568–3573.

    PubMed  CAS  Google Scholar 

  61. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao S-L. Soluble normal and mutated DNA sequences from single-copy genes in human blood.Cancer Epidemiol Biomarkers Prev 1994; 3: 67–71.

    PubMed  CAS  Google Scholar 

  62. Suzuki H, Yoshida S, Ichikawa Y, Yokota H, Mutoh H, Koyama A, Fukazawa M, Todokori T, Fukao K, Uchida K, Miwa M. Ki-ras mutations in pancreatic secretions and aspirates from two patients without pancreatic cancer.J Natl Cancer Inst 1994; 86: 1547–1549.

    Article  PubMed  CAS  Google Scholar 

  63. Fearon ER. K-ras gene mutation as a pathogenetic and diagnostic marker in human cancer.J Natl Cancer Inst 1993; 85: 1978–1980.

    Article  PubMed  CAS  Google Scholar 

  64. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor.Science 1993; 260: 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  65. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC. Benzodiazepine peptidomimetics: potent inhibitors ofras farnesylation in animal cells.Science 1993; 260: 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  66. Kohl NE, Wilson FR, Mosser SD, Giuliani E, deSolms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T-J, Smith RL, Graham SL, Hartman GD, Gibbs JB, Oliff A. Protein farnesylation inhibitors block the growth ofras-dependent tumors in nude mice.Proc Natl Acad Sci USA 1994; 91: 9141–9145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldas, C., Kern, S.E. K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol 18, 1–6 (1995). https://doi.org/10.1007/BF02825415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825415

Key Words

Navigation