Skip to main content
Log in

Galois theory for Hopf algebroids

  • Published:
Annali dell’Università di Ferrara Aims and scope Submit manuscript

Sunto

Un'estensioneB(A di algebre su un anello commutativok è unaH-estensione per unL-bialgebroideH seA è unaH-comodulo algebra eB è la sottoalgebra dei suoi coinvarianti. Essa èH-Galois se l'applicazione canonicaAA BAL H è un isomorfismo o, equivalentemente, se il coanello canonicoAL H:A è un coanello di Galois. Nel caso di un algebroide di Hopf\(\mathcal{H} = \left( {\mathcal{H}_L \mathcal{H}_R , S} \right)\) si dimostra che ogniH R-estensione è unaH L-estensione. Se l'antipode è biiettivo allora si dimostra che anche le nozioni di estensioniH R-Galois eH L-Galois coincidono.

I risultati per le strutture biiettive entwining sono estesi alle strutture entwining su algebre non commutative, al fine di dimostrare un teorema simile al Teorema dii Kreimer-Takeuchi per un Hopf algebroideH proiettivo finitamento generato con antipode biiettivo. Il teorema afferma che ogni estensioneH-GaloisBA è proiettiva e seA èk-piatto allora la suriettività dell'applicazione canonica è sufficiente a garantire la proprietà di Galois.

La teoria di Morita, sviluppata per i coanelli da Caenepeel, Vercruysse e Wang, viene applicata per ottenere criteri equivalenti per la proprietà di Galois per estensioni di algebroidi di Hopf. Questo conduce a risultati analoghi, per algebroidi di Hopf, a quelli ottenuti da Doi per estensioni di algebre di Hopf e da Cohen Fishman e Montgomery nel caso degli algebroidi di Hopf Frobenius.

Abstract

An extensionBA of algebras over a commutative ringk is anH-extension for anL-bialgebroidH ifA is anH-comodule algebra andB is the subalgebra of its coinvariants. It isH-Galois if the canonical mapAB AAL H is an isomorphism or, equivalently, if the canonical coringAL H:A is a Galois coring.

In the case of Hopf algebroid\(\mathcal{H} = \left( {\mathcal{H}_L \mathcal{H}_R , S} \right)\) anyH R-extension is shown to be also anH L-extension. If the antipode is bijective then also the notions ofH R-Galois extensions and ofH L-Galois extensions are proven to coincide.

Results about bijective entwining structures are extended to entwining structures over non-commutative algebras in order to prove a Kreimer-Takeuchi type theorem for a finitely generated projective Hopf algebroidH with bijective antipode. It states that anyH-Galois extensionBA is projective, and ifA isk-flat then already the surjectivity of the canonical map implies the Galois property.

The Morita theory, developed for corings by Caenepeel, Vercruysse and Wang is applied to obtain equivalent criteria for the Galois property of Hopf algebroid extensions. This leads to Hopf algebroid analogues of results for Hopf algebra, extensions by Doi and, in the case of Frobenius Hopf algebroids, by Cohen, Fishman and Montgomery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. Bálint—K. Szlachányi,Finitary Galois extensions over noncommutative bases, arXiv:math.QA/0412122.

  2. G. Böhm,Doi-Hopf modules over weak Hopf algebras Commun. Algebra28(10) (2000), pp. 4687–4698.

    Article  MATH  Google Scholar 

  3. G. Böhm An alternative notion of Hopf algebroid, in: Hopf algebras in noncommutative geometry and physics. S. Caenepeel, F. Van Oystaeyen (eds.), Lecture Notes in Pure and Appl. Math.239, 31–54, Dekker, New York, 2004.

    Google Scholar 

  4. G. Böhm,Internal bialgebroids, entwining, structures and corings, AMS Contemp. Math.376 (2005), pp. 207–226.

    Google Scholar 

  5. G. Böhm,Integral theory for Hopf Algebroids, arXiv:math.QA/0403195 v3, Algebra Represent. Theory to appear.

  6. G. BöhmF. NillK. Szlachányi,Weak Hopf Algebras I: Integral Theory and C *-structure, J. Algebra221 (1999), pp. 385–438.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. BöhmK. Szlachányi,Hopf algebroids with bijective antipodes: axioms, integrals and duals, J. Algebra,274 (2004), pp. 708–750.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Brzeziński,The structure of corings, Algebra Represent. Theory5 (2002), pp. 389–410.

    Article  MATH  Google Scholar 

  9. T. Brzeziński,Galois comodules, J. Algebra,290 (2005), pp. 503–537.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. BrzezińskiS. CaenepeelG. Militaru,Doi-Koppinen modules for quantum-groupoids. J. Pure Appl. Algebra175 (2002), pp. 46–62.

    Google Scholar 

  11. T. BrzezińskiS. Majid,Coalgebra bundles, Comm. Math. Phys.191 (1998), pp. 467–492.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. BrzezińskiG. Militaru,Bialgebroids, × R-bialgebras and Duality, J. Algebra251 (2002), pp. 279–294.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Brzeziński—R. B. Turner—A. P. Wrightson,The structure of weak coalgebra-Galois extensions, arXiv:math.QA/0411230, Comm. Algebra, to apper.

  14. T. Brzeziński—R. Wisbauer,Corings and Comodules, London Math. Soc. LNS309, Cambridge Univ. Press 2003.

  15. S. Caenepeel,Galois corings from the descent theory point of view, Fields Inst. Comm.43 (2004), pp. 163–186.

    MathSciNet  Google Scholar 

  16. S. CaenepeelE. de Groot,Modules over weak entwining structures, Contemp. Math.267 (2000), pp. 31–54.

    Google Scholar 

  17. S. Caenepeel—E. de Groot,Galois theory for weak Hopf algebras, arXiv:math.RA/0406186.

  18. S. CaenepeelJ. VercruysseS. Wang,Morita theory for corings and cleft entwining structures, J. Algebra276 (2004), pp. 210–235.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. CohenD. Fishman,Semisimple extensions and elements of trace 1, J. Algebra149 (1992), pp. 419–437.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. CohenD. FishmanS. Montgomery,Hopf Galois extensions, smash products, and Morita equivalence, J. Algebra133 (1990), pp. 351–372.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Doi,Generalized smash products and Morita contexts for arbitrary Hopf algebras, J. Bergen, S. Montgomery, eds., Lecture Notes in Pure and Appl. Math. 158, Dekker, New York, 1994.

    Google Scholar 

  22. P. EtingofD. Nikshych,Dynamical quantum groups at roots of 1 Duke Math J.108 (2001), pp. 135–168.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Kadison,Depth two and the Galois coring, arXiv:math.RA/0408155.

  24. L. KadisonK. Szlachányi,Bialgebroid actions on depth two extensions and duality, Advances in Math.179 (2003), pp. 75–121.

    Article  MATH  Google Scholar 

  25. H. F. KreimerM. Takeuchi,Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J.30 (1981), pp. 675–692.

    Article  MATH  MathSciNet  Google Scholar 

  26. J-H. Lu,Hopf algebroids and quantum groupoids, Int. J. Math.7 (1996), pp. 47–70.

    Article  MATH  Google Scholar 

  27. F. Nill,Weak Bialgebras, arXiv:math.QA/9805104.

  28. P. Schauenburg,Bialgebras over noncommutative rings, and a structure theorem for Hopf bimodules, Applied Categorical Structures6 (1998), pp. 193–222.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Schauenburg,Weak Hopf algebras and quantum groupoids, Banach Center Publications61 (2003), pp. 171–188.

    MathSciNet  Google Scholar 

  30. P. Schauenburg,Hopf-Galois and bi-Galois extensions, Fields Inst. Comm.,43 (2004), pp. 469–515.

    MathSciNet  Google Scholar 

  31. P. Schauenburg—H.-J. Schneider,On generalized Hopf Galois extensions, Pure Appl. Algebra, to apper. arXiv: math.QA/0405184.

  32. H.-J. Schneider,Principal homogenous spaces for arbitrary Hopf algebras, Israel J. of Math.72 (1990), pp. 167–195.

    Article  MATH  Google Scholar 

  33. R. Street,The formal theory of monads, J. Pure Appl. Algebra2 (1972), pp. 149–168.

    Article  MATH  MathSciNet  Google Scholar 

  34. K. Szlachányi,Finite Quantum Groupoids and Inclusions of Finite Type, Fields Inst. Comm.30 (2001), pp. 393–407.

    Google Scholar 

  35. K. Szlachányi,The double algebraic viewpoint of finite quantum groupoids, J. Algebra280 (2004), pp. 249–294.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Takeuchi,Groups of Algebras over A\(\bar A\). J. Math. Soc. Japan29 (1977), pp. 459–492.

    Article  MATH  MathSciNet  Google Scholar 

  37. P. Xu,Quantum Groupoids, Commun. Math. Phys.216 (2001), pp. 539–581.

    Article  MATH  Google Scholar 

  38. R. Wisbauer,On Galois comodules, arXiv: math.RA/0408251 v2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Böhm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, G. Galois theory for Hopf algebroids. Ann. Univ. Ferrara 51, 233–262 (2005). https://doi.org/10.1007/BF02824833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02824833

Keywords

Navigation