Skip to main content
Log in

Spatial energy decay estimate in dynamical problems for a micropolar viscoelastic solid

  • Published:
Annali dell’Università di Ferrara Aims and scope Submit manuscript

Sunto

Consideriamo un solido viscoelastico micropolare lineare occupante un dominioB in condizioni dinamiche. Dapprima assumendo cheB sia del tipoB={∈R:x’ =(x 1,x 2)∈D(x 3);x 3∈R++} e che il corpo sia soggetto a dati al contorno diversi da zero solo suD(0), stimiamo ad ogni istantet>0 fissato, mediante i dati iniziali e al contorno, l’«energia» della porzione di solido a distanza maggiore diz daD(0) (g t(z)) e la sua norma inL 1(0, t) (Gt(z)). Inoltre mostriamo che se le storie passate sono nulle suD(z),αz≥z 0≥0, allora ad ogni istantet>0 fissato, i punti (x’’,z) conz−z 0≥Vt sono in quiete, mentre perz−z 0≤Vt, Gt (z) decade come \(1 - \frac{{z - z_0 }}{{Vt}}\).V è una costante positiva calcolabile che dipende dalle funzioni di rilassamento, dalla densità di massa, dal tensore di microinerzia. Infine estendiamo i risultati a domini più generali sotto l’ipotesi che i dati iniziali e al contorno abbiano supporto compatto. Nel nostro studio utilizziamo un’energia libera massimale che ci consente di imporre restrizioni molto deboli sulle funzioni di rilassamento.

Abstract

We consider a linear micropolar viscoelastic solid occupying a domainB in dynamical conditions. First, on assuming thatB is of the kindB={∈R:x’ =(x 1,x 2)∈D(x 3);x 3∈R++}, and that the body is subjected to boundary data different from zero only onD(0), we estimate for any fixedt>0, in terms of the initial and boundary data, the «energy» of the portions of the solid at distance greater thanz fromD(0)(g t(z)) and its norm inL 1(0,t) (Gt(z)). Moreover we show that, if there exists somez 0≥0, such that past histories vanish onD(z) withz≥z 0, then for any fixedt>0 the points (x’’, z) withz−z 0≥Vt are at rest, while forz−z 0≤Vt, Gt(z) decays withz−z 0, the decay rate being described by the factor \(1 - \frac{{z - z_0 }}{{Vt}}\).V is a computable positive constant depending on the relaxation functions, the mass density and the microinertial tensor. Finally these last results are extended to more general domains under the hypothesis that the initial and boundary data have a bounded support. In our analysis we make use of a Maximal Free Energy which allows us to impose very mild restrictions on the relaxation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. C. Eringen,Linear theory of Micropolar Viscoelasticity, Int. J. Engng. Sci.5 (1967), pp. 191–204.

    Article  MATH  Google Scholar 

  2. M. F. McCartyA. C. Eringen,Micropolar elastic waves, Int. J. Engng. Sci.,7 (1969), pp. 447–458.

    Article  Google Scholar 

  3. D. Jesan,Sur la théorie de la viscoelasticité micropolaire, C. R. A. S.,A 270 (1970), pp. 140–143.

    Google Scholar 

  4. S. De CiccoL. Nappa,On Saint-Venant Principle for Micropolar Viscoelastic bodies, Int. J. Engng. Sci.,37 (1999), pp. 883–893.

    Article  Google Scholar 

  5. C. Galeş,On Saint-Venant’s problem in micropolar viscoelasticity, An. Ştiin. Univ. Al. I. Cuza Iaşi. Mat. (N. S.),46, no. 1 (2000), pp. 131–148.

    MATH  Google Scholar 

  6. C. O. HorganJ. K. Knowles,Recent developments concerning Saint-Venant’s principle, Adv. Appl. Mech.,23, T. Y. Wu and J. W. Hutchinson, eds., Academic Press, New York (1983), pp. 179–269.

    Google Scholar 

  7. C. O. Horgan,Recent developments concerning Saint-venant’s principle, an update, Appl. Mech. Reviews,42 (1989), pp. 295–303.

    Article  MathSciNet  Google Scholar 

  8. C. O. Horgan,Recent developments concerning Saint-venant’s principle, a second update, Appl. Mech. Reviews,49 (1996), S101-S111.

    Google Scholar 

  9. C. O. Horgan,Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics, in Mathematical Problems in Elasticity, Ser. Adv. Math. Appl. Sci.,38 (1996), R. Russo, ed., World Scientitic., River Edge NJ, pp. 47–89.

    Google Scholar 

  10. M. FabrizioC. GiorgiA. Morro,Internal dissipation, Relaxation property and Free Energy in materials with fading memory, J. of Elasticity,40 (1995), pp. 107–122.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. ÇhiritaM. CiarlettaM. Fabrizio,Saint-Venant’s Principle in Linear Viscoelasticity, Int. J. Engng. Sci.,35 (1997), pp. 1221–1236.

    Article  MATH  Google Scholar 

  12. J. N. FlavinR. J. KnopsL. E. Payne,Energy bounds in dynamical problems for a semi-infinite elastic beam, in Elasticity: Math. Methods and Applications, Eds. g. Eason & R. W. Hogden, Ellis Horwood, Cichester, 1990, pp. 101–111.

    Google Scholar 

  13. S. ÇhiritaR. Quintanilla,On Saint-Venant’s Principle in Linear Elastodynamics. J. Elast.,42 (1996), pp. 201–215.

    Article  MATH  Google Scholar 

  14. A. BorrelliM. C. Patria,Spatial energy estimates in dynamical problems for a semi-infinite piezoelectric beam, IMA J. Appl. Math.,64, (2000), pp. 73–93.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. ÇhiritaM. Ciarletta,Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua, Eur. J. Mech. A/Solids,18 (1999), pp. 915–933.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. E. Gurtin,The linear theory of elasticity, in Handbuch Der Physik, vol. VIa/2, Springer-Verlag, 1972.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrelli, A., Piras, E. Spatial energy decay estimate in dynamical problems for a micropolar viscoelastic solid. Ann. Univ. Ferrara 48, 275–306 (2002). https://doi.org/10.1007/BF02824750

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02824750

Key words

Navigation