Skip to main content
Log in

The stability of constant equilibrium states in relaxation models

  • Published:
Annali dell’Università di Ferrara Aims and scope Submit manuscript

Sunto

Consideriamo vari sistemi di PDE del primo ordine con dissipazione e leggi di conservazione parziali. Tale classe include modelli del tipo studiato da S. Jin e Z. Xin per i modelli di gas alle discrete velocità, come il sistema di Broadwell. Il modello di S. Jin e Z. Xin ammette una regione convessa, compatta, positivamente invariante, in funzione del sistema all’equilibrio. Di conseguenza è ottenuta l’esistenza di soluzioni deboli globali per il problema di Cauchy per dati grandi. Per sistemi più generali l’esistenza globale di una soluzione ad entropia limitata risulta un’assunzione di base in questo lavoro. I dati sono unidimensionali o spazialmente periodici o inL 2. Proviamo che la soluzione di entropia tende allo stato di equilibrio; quest’ultimo o è zero o è determinato dal valor medio delle componenti conservate. Sottolineiamo che non richiediamo ipotesi sulla nonlinearità del sistema nello stato base di equilibrio. Forniamo due diverse dimostrazioni di stabilità. La prima usa il metodo di compattezza condensata ed è piuttosto efficiente. Ad esempio diversi modelli quasi lineari. Ma tale prova non fornisce una velocità di decadimento. La seconda usa una stima di dispersione per la parte principale del modello. Si applica a dati periodici e richiede una forte ipotesi di semilinearità, ma fornisce un decadimento di tipo esponenziale per la norma diL 2. Auspichiamo che possa estendersi in contesti multidimensionali.

Abstract

We consider various first-order systems of PDEs with partial dissipation, as well as partial conservation. This class includes relaxation models, for instance the one designed by S. Jin and Z. Xin, as well as discrete velocity models for gases, as the Broadwell system. As we showed in a recent paper, the Jin-Xin model admits a convex compact positively invariant region, whenever the equilibrium system does. As a by-product, we obtained the existence of global weak solutions for the Cauchy problem with large data. For more general systems, the global existence of a uniformly bounded entropy solution will be a basic assumption in this work. We consider one-dimensional data which are either space periodic or square integrable. We prove that the (expected globally bounded) entropy solution relaxes to the equilibrium state; the latter is either zero or is determined by the mean value of the conserved components. We emphasize that we do not need any assumption about the nonlinearity of the underlying equilibrium system. We give two different proofs of the stabilization, which apply in different contexts. The first one uses compensated compactness and has a rather broad efficiency. For instance, it applies to several quasi-linear models. But the convergence result does not provide any decay rate in the periodic setting. The other one uses a dispersion estimate for the principal part of the model. It applies to periodic data and needs the strong assumption of semi-linearity, but yields an exponential decay in theL 2-norm. We expect that it could extend to multi-dimensional contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. ArkerydR. Illner,The Broadwell model in a box: strong L 1-convergence to equilibrium, SIAM J. Appl. Math.,55 (1995), pp. 641–650.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. T. Beale,Large-time behavior of the Broadwell model of a discrete velocity gas, Commun. Math. Phys.,102 (1985), pp. 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. BoillatT. Ruggeri,Hyperbolic principal subsystems: Entropy convexity and sub-characteristic conditions, Arch. Rational Mech. Anal.,137 (1997), pp. 305–320.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.-M. Bony,Existence globale et diffusion pour les modèles discrets de la cinétique des gaz, First European Congress in Mathematics I (Paris, 1992), pp. 391–410. Progr. Math.,119, Birkhaüser, Basel (1994).

    Google Scholar 

  5. G.-Q. ChenT.-P. Liu,Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math.,46 (1993), pp. 755–781.

    Article  MATH  MathSciNet  Google Scholar 

  6. G.-Q. ChenD. LevermoreT.-P. Liu,Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.,47 (1994), pp. 787–830.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. ChueyC. ConleyJ. Smoller,Positively invariant regions of nonlinear diffusion equations, Indiana Univ. Math. J.,26 (1977), pp. 373–392.

    Article  MathSciNet  Google Scholar 

  8. R. DiPerna,Convergence of approximate solutions of conservation laws, Arch. Rational Mech. Anal.,82 (1983), pp. 27–70.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. FaciuM. Mihailescu-Suliciu,The energy in one-dimensional rate-type semilinear viscoelasticity, Int. J. Solid Structures,23 (1987), pp. 1505–1520.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Hanouzet—R. Natalini,Personal communication.

  11. S. JinZ. Xin,The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.,48 (1995), pp. 235–276.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Murat,Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),5 (1978), pp. 489–507.

    MATH  MathSciNet  Google Scholar 

  13. T. Ruggeri—D. Serre,Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy, In preparation.

  14. D. Serre,Relaxations semi-linéaire et cinétique des systèmes de lois de conservation. An. Inst. H. Poincaré Anal. Non Linéaire,17 (2000), pp. 169–192.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Serre,Oscillations non linéaires des systèmes hyperboliques: méthodes et résultats qualitatifs, Ann. Inst. Henri Poincaré, Analyse non linéaire,8 (1991), pp. 351–417.

    MathSciNet  Google Scholar 

  16. M. Slemrod,Large time behavior of the Broadwell model of a discrete velocity gas with specularly reflective boundary conditions, Arch. Rational Mech. Anal.,111 (1990), pp. 323–342.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Tartar,Existence globale pour un système hyperbolique semi-linéaire de la théorie cinétique des gaz, Goulaouic-Meyer-Schwartz Seminar (1975–76) Ecole Polytechnique (Palaiseau, 1976).

  18. L. Tartar,Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt symposium, Vol.IV, pp. 136–212, Res. Notes in Math., 39, Pitman, London, (1979).

    Google Scholar 

  19. A. Tzavaras,Materials with internal variables and relaxation of conservation laws, Arch. Rational Mech. Anal.,146 (1999), pp. 129–155.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was done from one part in accomplishment of the European IHP project «HYKE», contract #XXX, while visiting the Dipartimento di Matematica of the Università degli Studi di Ferrara, and the CIRAM in the Università di Bologna. The author is happy to thank Professors M. Padula, F. Ancona, A. Corli and T. Ruggeri for their kind invitations and the same persons, plus A. Bressan and L. Tartar for stimulating discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serre, D. The stability of constant equilibrium states in relaxation models. Ann. Univ. Ferrara 48, 253–274 (2002). https://doi.org/10.1007/BF02824749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02824749

Keywords

Navigation