Skip to main content
Log in

Comparison of fish and macroinvertebrate use ofTypha angustifolia, Phragmites australis, and treatedPhragmites marshes along the lower Connecticut River

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. andM. Castagna. 1975. Aspects of an undescribed reproductive behavior inFundulus heteroclitus (Pisces: Cyprinodontae) from Virginia.Chesapeake Science 16:282–284.

    Article  Google Scholar 

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reedPhragmites australis invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.

    Article  Google Scholar 

  • Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke, andM. D. Newkirk. 1994. Gut contents of common mummichogs,Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes.Estuaries 17:462–471.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Babkin, B. P. andD. J. Bowie. 1928. The digestive system and its function inFundulus heteroclitus.Biological Bulletin 54:254–277.

    Article  CAS  Google Scholar 

  • Bellet, L. 2000. The impacts of accelerated relative sea level rise on Connecticut tidal marshes. M.A. Thesis, Department of Botany, Connecticut College, New London, Connecticut.

    Google Scholar 

  • Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.

    Google Scholar 

  • Breder, Jr.,C. M. 1960. Design for a fry trap.Zoologica 45:155–160.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–274.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.

    Google Scholar 

  • Everett, R. A. andG. M. Ruiz. 1993. Coarse woody debris as a refuge from predation in aquatic communities: An experimental test.Oecologia 93:475–486.

    Article  Google Scholar 

  • Fell, P. E., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grassPhragmites australis (Cav.) Trin. Ex Steud., affect the availability of prey resources for the mummichog,Fundulus heteroclitus L.?Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Fulling, G. L., M. S. Peterson, andG. J. Crego. 1999. Comparison of Breder traps and seines used to sample marsh nekton.Estuaries 22:224–230.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, andP. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America.Wetlands 19:733–755.

    Google Scholar 

  • Gleason, H. A. andA. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. New York Botanic Garden, New York.

    Google Scholar 

  • Gregg, C. S. andJ. W. Fleeger. 1998. Grass shrimpPalaemonetes pugio predation on sediment- and stem-dwelling meiofauna: Field and laboratory experiments.Marine Ecology Progress Series 175:77–86.

    Article  Google Scholar 

  • Hanson, S. R., D. T. Osgood, andD. J. Yozzo. 2002. Nekton use of aPhragmites australis marsh in the Hudson River, New York, USA.Wetlands 22:326–337.

    Article  Google Scholar 

  • Heck, Jr.,K. L. andT. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.Journal of Experimental Marine Biology and Ecology 53:125–134.

    Article  Google Scholar 

  • Hettler, Jr.,W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, U.S.A..Marine Ecology Progress Series 56:111–118.

    Article  Google Scholar 

  • Hyslop, E. J. 1980. Stomach contents analysis—A review of methods and their application.Journal of Fish Biology 17:411–429.

    Article  Google Scholar 

  • James-Perri, M. J., K. B. Raposa, andJ. G. Catena. 2001. Diet composition of mummichogs,Fundulus heteroclitus, from restoring and unrestricted regions of a new England (U.S.A.) salt marsh.Estuarine, Coastal and Shelf Science 53:205–213.

    Article  Google Scholar 

  • Joyce, A. A. andS. B. Weisberg. 1986. The effects of predation by the mummichog,Fundulus heteroclitus (L.) on the abundance and distribution of the saltmarsh snail,Melampus bidentatus (Say).Journal of Experimental Marine Biology and Ecology 100:295–306.

    Article  Google Scholar 

  • Kneib, R. T. 1982. The effects of predation by wading birds (Ardeidae) and blue crabs (Callinectes sapidus) on the population size structure of the common mummichog,Fundulus heteroclitus.Estuarine, Coastal and Shelf Science 14:159–165.

    Article  Google Scholar 

  • Kneib, R. T.. 1984. Patterns in the utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.

    Article  Google Scholar 

  • Kneib, R. T. 1985. Predation and disturbance by grass shrimp,Palaemonetes pugio Hothius, in soft-substrate benthic invertebrate assemblages.Journal of Experimental Marine Biology and Ecology 93:91–102.

    Article  Google Scholar 

  • Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–269.

    Google Scholar 

  • Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp.Ecology 68:379–386.

    Article  Google Scholar 

  • Kneib, R. T. 1988. Testing the indirect effects of predation in an intertidal soft-bottom community.Ecology 69:1795–1805.

    Article  Google Scholar 

  • Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.

    Article  Google Scholar 

  • Kneib, R. T. 1994. Spatial pattern, spatial scale, and feeding in fishes, p. 171–185.In D. J. Stouder, K. L. Fresh, and R. J. Feller (eds.), Theory and Application in Fish Feeding Ecology. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Kneib, R. T. 1997. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.

    Article  Google Scholar 

  • Kneib, R. T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States, p. 267–291.In M. P. Weinstein, and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.

    Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31:121–140.

    Article  Google Scholar 

  • Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.

    Article  Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.

    Article  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Morgan, M. D. 1980. Grazing and predation of the grass shrimpPalaemonetes pugio.Limnology and Oceanography 25:896–902.

    Google Scholar 

  • Nichols, G. E. 1920. The vegetation of Connecticut VI. The plant association of depositing areas along the seacoast.Bulletin of the Torrey Botanical Club 47:511–548.

    Article  Google Scholar 

  • Nixon, S. W. andC. A. Oviatt. 1973. Ecology of a New England salt marsh.Ecological Monographs 43:463–498.

    Article  Google Scholar 

  • Orth, R. J. andK. L. Heck, Jr. 1980. Structural components of eelgrass (Zostera marina) meadows in the Lower Chesapeake Bay—Fishes.Estuaries 3:278–288.

    Article  Google Scholar 

  • Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:325–362.

    Google Scholar 

  • Posey, M. H. andA. H. Hines. 1991. Complex predator-prey interactions within an estuarine benthic community.Ecology 72:2155–2169.

    Article  Google Scholar 

  • Reis, R. R. andJ. M. Dean. 1981. Temporal variation in the utilization of an intertidal creek by the bay anchovy (Anchoa mitchilli).Estuaries 4:16–23.

    Article  Google Scholar 

  • Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  • Rountree, R. A. andK. W. Able. 1993. Diel variations in the decapod crustaceans and fish assemblages in New Jersey polyhaline marsh creeks.Estuarine, Coastal and Shelf Science 37:181–210.

    Article  Google Scholar 

  • Rozas, L. P. 1995. Hydroperiod and its influence on nekton use of the salt marsh: A pulsing ecosystem.Estuaries 18:579–590.

    Article  Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection.Estuaries 20:199–213.

    Article  Google Scholar 

  • Rozas, L. P. andW. E. Odum. 1987. Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 10:36–43.

    Article  Google Scholar 

  • Sargent, W. B., andP. R. Carlson Jr. 1987. The utility of Breder traps for sampling mangrove and high marsh fish assemblages, p. 194–205.In F. J. Webb (ed.), Proceedings of the Fourteenth Annual Conference on Wetlands Restoration and Creation. Hillsborough Community College, Tampa, Florida.

    Google Scholar 

  • Scatolini, S. T. andJ. B. Zedler. 1996. Epibenthic invertebrates of natural and constructed marshes of San Diego Bay.Wetlands 16:24–37.

    Article  Google Scholar 

  • Staltonstall, K.. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis into North America.Proceedings of the National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Stevenson, J. C., J. E. Rooth, M. S. Kearney, andK. L. Sundberg. 2000. The health and long term stability of natural and restored marshes in Chesapeake Bay, p. 709–735.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.

    Google Scholar 

  • Szedlmayer, S. T. andK. W. Able. 1996. Patters of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey estuary.Estuaries 19:697–709.

    Article  Google Scholar 

  • Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.

    Article  Google Scholar 

  • Talley, T. S. andL. A. Levin. 2001. Modification of sediments and macrofauna by an invasive marsh plant.Biological Invasions 3:51–68.

    Article  Google Scholar 

  • Taylor, M. H.. 1986. Environmental and endocrine influences on reproduction ofFundulus heteroclitus.American Zoologist 26: 159–171.

    CAS  Google Scholar 

  • Taylor, M. H., L. DiMichele, and G. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus.Copeia 397–399.

  • Taylor, M. H., G. J. Leach, L. DiMichele, M. M. Levitan, and W. F. Jacob. 1979. Lunar spawning cycle in the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 291–297.

  • Vince, S., I. Valiela, N. Backus, andJ. M. Teal. 1976. Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey size and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and detritus of smooth cordgrassSpartina alterniflora and the common reedPhragmites australis to brackish-marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24: 90–107.

    Article  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  • Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Weisberg, S. B., R. Whalen, andV. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifishFundulus heteroclitus.Marine Biology 61:243–246.

    Article  Google Scholar 

  • Windham, L. andR. G. Lathrop, Jr. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Sources of Unpublished Materials

  • Osgood, D. T. Personal communication. Department of Biology, Albright College, P. O. Box 15234, Reading, Pennsylvania 19612-5234.

  • Pakenham, A. Unpublished data. Connecticut College, New London, Connecticut 06320-4196.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Fell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fell, P.E., Scott Warren, R., Light, J.K. et al. Comparison of fish and macroinvertebrate use ofTypha angustifolia, Phragmites australis, and treatedPhragmites marshes along the lower Connecticut River. Estuaries 26, 534–551 (2003). https://doi.org/10.1007/BF02823729

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823729

Keywords

Navigation