Skip to main content
Log in

Tidal hydrology and habitat utilization by resident nekton inPragmites and Non-Phragmites Marshes

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We compared nekton densities over a range of measured flooding conditions and locations withinPhragmites australis andSpartina alterniflora (salt marsh cordgrass) at the Charles Wheeler Salt Marsh, located on the lower Housatonic River estuary in southwestern Connecticut. Nekton were sampled on nine spring high tide events from May to October 2000 using bottomless lift nets positioned between 0–5 and 10–20 m from the creek edge. Flooding depth, duration, and frequency were measured from each vegetation type during each sampling month. Benthic macroinvertebrate density was also measured within each vegetation type in May, July, and September. Frequency of flooding was 52% lower and flooding depth and duration were also significantly reduced inP. australis relative toS. alterniflora. A total of 4,197 individuals representing 7 species, mostlyPalaemonetes pugio (dagger-blade grass shrimp) andFundulus heteroclitus (common mummichog), were captured.P. pugio densities were significantly greater inS. alterniflora as were benthic macroinvertebrate density and taxa richness during May, but not during June or October. Total fish density was not significantly different betweenP. australis andS. alterniflora and was independent of location on the marsh. Significantly more juvenileF. heteroclitus were collected withinS. alterniflora relative toP. australis in June and July, suggesting that recruitment of this species may be lower inP. australis habitat. Fish density generally did not vary predictably across the range of flooding depth and duration; there was a positive relationship between flooding depth and fish density inS. alterniflora. The measured reduction in flooding frequency (52%) withinP. australis at the Housatonic site would result in an average total monthly fish use, expressed as density, of 447 ind m−2 forP. australis and 947 ind m−2 forS. alterniflora. WhenP. australis expansion results in reduction of flooding frequency and duration, nekton community composition can change, access to the marsh surface is reduced twofold, and nursery habitat function may be impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.

    Article  Google Scholar 

  • Able, K. W., C. W. Talbot, andJ. K. Shishler. 1983. The spotfin killifish (Fundulus luciae), is abundant in New Jersey salt marshes.Bulletin of the New Jersey Academy of Science 28:7–10.

    Google Scholar 

  • Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chambers, R. M., D. T. Osgood, andN. Kalapasev. 2002. Hydrologic and chemical controls ofPhragmites distribution on the Lower Housatonic River estuary.Marine Ecology Progress Series 239:83–91.

    Article  Google Scholar 

  • Fell, P. E., S. P. Weissbach, D. A. Jones, M. A. Fallon J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis, affect the availability of prey resources for the mummichog,Fundulus heteroclitus? Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Hanson, S., D. T. Osgood, andD. J. Yozzo. 2002. Nekton use of aPhragmites australis marsh on the Hudson River, New York.Wetlands 22:326–337.

    Article  Google Scholar 

  • Joyce, A. A. andS. B. Weisberg. 1986. The effects of predation by the mummichog.Fundulus heteroclitus (L.) on the abundance and distribution of the salt marsh snail,Melampus bidentatus (Say).Journal of Experimental Marine Biology and Ecology 100:295–306.

    Article  Google Scholar 

  • Kneib, R. T. 1984. Patterns in the utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.

    Article  Google Scholar 

  • Kneib, R. T. 1985. Predation and disturbance by grass shrimp,Palaemonetes pugio Holthuis, in soft-substratum benthic invertebrate assemblages.Journal of Experimental Marine Biology and Ecology 93:91–102.

    Article  Google Scholar 

  • Kneib, R. T. 1997a. The role of tidal marshes in the ecology of estuarine nekton.Oceanography and Marine Biology: An Annual Review 35:163–220.

    Google Scholar 

  • Kneib, R. T. 1997b. Early life stages of resident, nekton in intertidal marshes.Estuaries 20:214–230.

    Article  Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1982. Benthic invertebrate responses to size and density manipulations of the common mummichog,Fundulus heteroditus, in an intertidal marsh.Ecology 63:1518–1532.

    Article  Google Scholar 

  • Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 94:227–238.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andS. alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.

    Article  Google Scholar 

  • Minello, T. J. andJ. W. Webb, Jr. 1997. Use of natural and created SA salt marshes by fisheries species and other aquatic fauna in Galveston Bay, Texas (USA).Marine Ecology Progress Series 151:165–179.

    Article  Google Scholar 

  • Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.

    Google Scholar 

  • Orson, R. A., R. S. Warren, andW. A. Niering. 1987. Development of a New England river valley tidal marsh.Estuaries 10:20–27.

    Article  Google Scholar 

  • Osgood, D. T. 2000. Subsurface hydrology and nutrient export from barrier island marshes at different tidal ranges.Wetlands Ecology and Management 8:133–146.

    Article  CAS  Google Scholar 

  • Raposa, K. B. andC. T. Roman. 2001. Seasonal habitat-use patterns of nekton in tide-restricted and unrestricted New England salt marsh.Wetlands 21:451–461.

    Article  Google Scholar 

  • Rilling, G. C., P. E. Fell, andR. S. Warren. 1998. Fish use of brackish tidal wetlands on the lower Connecticut River: A comparison of aPhragmites australis-dominated vs. a restored high marsh. Technical report to the Connecticut Department of Environmental Protection, Office of Long Island Sound Programs. Hartford, Connecticut.

    Google Scholar 

  • Robert, L. L. andJ. F. Matta. 1984. Aquatic macroinvertebrates in an irregularly flooded salt marsh: Diversity and seasonal variation.Environmental Entomology 13:1097–1104.

    Google Scholar 

  • Rooth, J. E. andJ. C. Stevenson 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.

    Article  Google Scholar 

  • Rozas, L. P. 1992. Bottomless lift net for quantitatively sampling nekton on intertidal marshes.Marine Ecology Progress Series 89: 282–292.

    Article  Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Rozas, L. P. andW. E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: Testing the roles of food and refuge.Oecologia 77:101–106.

    Article  Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.

    Article  Google Scholar 

  • Taylor, M. H., L. DiMichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog.Fundulus heteroclitus, Copeia 1977:397–399.

    Article  Google Scholar 

  • Taylor, M. H., G. J. Leach, L. DiMichele, W. H. Levitan, andW. F. Jacob. 1979. Lunar spawning cycle in the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.

    Article  Google Scholar 

  • Vince, S., I. Valiela, andN. Backus. 1976. Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey size and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.

    Article  Google Scholar 

  • Wainwright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the Lower Connecticut River.Estuaries 24:90–107.

    Article  Google Scholar 

  • Weinstein, M. P. andJ. H. Baletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  • Whitworth, W. R. 1996. Freshwater fishes of Connecticut. Connecticut Department of Environmental Protection Bulletin 114. Hartford, Connecticut.

  • Windham, L. andR. G. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey,Estuaries 22:927–935.

    Article  Google Scholar 

  • Wingrond, H. G. andE. Kiviat. 1997. Invasion ofPhragmites australis in the tidal marshes of the Hudson River, p. VI: 1–29.In W. C. Nieder and J. R. Waldman (eds.), Final Reports of the Tibor T. Polgar Fellowship Program, 1996. Hudson River Foundation, New York

    Google Scholar 

  • Yozzo, D. J., A. Mannino, andD. E. Smith. 1994. Mid-summer abundance of resident sub-adult marsh nekton at the Virginia Coast Reserve.Virginia Journal of Science 45:22–30.

    Google Scholar 

  • Yozzo, D. J. andD. E. Smith. 1998. Composition and abundance of resident marsh-surface nekton: Comparison between tidal freshwater and salt marshes in Virginia, USA.Hydrobiologia 362:9–19.

    Article  Google Scholar 

Source of Unpublished Materials

  • Orson Environmental Consulting., personal communication. P. O. Box 921, Branford, Connecticut 06405-0921

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Osgood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osgood, D.T., Yozzo, D.J., Chambers, R.M. et al. Tidal hydrology and habitat utilization by resident nekton inPragmites and Non-Phragmites Marshes. Estuaries 26, 522–533 (2003). https://doi.org/10.1007/BF02823728

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823728

Keywords

Navigation