Skip to main content
Log in

Issues in light hadron spectroscopy

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

A high priority in light spectroscopy is to seek out and characterize various types of non-\((Q\bar Q)\) meson. The large quantity of new data now appearing will present a great opportunity. To identify the non-\((Q\bar Q)\) intruders one needs to know the regular\((Q\bar Q)\) pattern well; whole meson families thus become a target for close investigation. A powerful discovery strategy is to observe the same meson in a variety of reactions. Because mesons appear as resonances, other dynamics can distort the signal in a particular decay channel. Unitarity is the master principle for co-ordinating various sightings of the same resonance. Much of the new spectroscopic information in prospect will come from inferring two-body dynamics from three-body final states. Conventional methods of analysis via the isobar model use approximations to unitarity that need validation. Of all the meson families, the scalars should be a prime hunting ground for non-\((Q\bar Q)\)’s. Even before the advent of the new results, some revisions of the «official» classifications are urged. In particular, it is argued that the lightest broadI=0 scalar is a very broad f0 (1000). One unfinished task is to decide whether f0 (975) and a0 (980) are alike or different; several non-\((Q\bar Q)\) scalar scenarios hinge on this. To settle this, much better data on\(K\bar K\) channels is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. As concerns experimental results, the time reference of this review is pre-Como. For new results see these proceedings.

  2. For example, the concept of «constituent, quark», denoted (capital) Q is taken as unproblematic; even the notion of «constituent gluon» denoted by (capital) G is used for brevity. For steps towards a deeper classification of states with colour excitations, seeR. L. Jaffe, K. Johnson andZ. Ryzak:Ann. Phys. (N.Y.),168, 344 (1986).

    Article  ADS  MATH  Google Scholar 

  3. T. H. Burnett andS. R. Sharpe:Annu. Rev. Nucl. Part. Sci.,40, 327 (1990).

    Article  ADS  Google Scholar 

  4. A. Donnachie:Hadron '91, edited byS. Oneda andD. C. Peaslee (World Scientific, 1992), p. 399.

  5. See these proceedings. For asummary of the new Crystal Barrel results at LEAR seeM. Doser (these proceedings, p. 1815); likewise for an overview of new OBELIX results see p. 2243, 2279.

  6. S. Godfrey andN. Isgur:Phys. Rev. D,32, 189 (1985).

    Article  ADS  Google Scholar 

  7. GAMS Collaboration, (D. Alde et al.):Phys. Lett. B,205, 397 (1988).

    Article  ADS  Google Scholar 

  8. PLUTO Collaboration (Ch. Berger et al.):Z. Phys. C,38, 521 (1988);ARGUS Collaboration (H. Albrecht et al.):Phys. Lett B,217, 205 (1989) andZ. Phys. C,50, 1 (1991);CELLO Collaboration (H. J. Behrend et al.):Phys. Lett. B,218, 494 (1989).

    Article  Google Scholar 

  9. J. Weinstein andN. Isgur:Phys. Rev. Lett.,48, 659 (1982);Phys. Rev. D,27, 588 (1983);41, 2236 (1990). See alsoT. Barnes: Oak Ridge preprints ORNL-CCIP-93-04; these proceedings, p. 2491.

    Article  ADS  Google Scholar 

  10. R. L. Jaffe:Phys. Rev. D,15, 267 (1977).

    Article  ADS  Google Scholar 

  11. C. B. Dover:Phys. Rev. Lett.,57, 1207 (1986).

    Article  ADS  Google Scholar 

  12. J. Weinstein andN. Isgur: ref.[9].

    Article  ADS  Google Scholar 

  13. N. A. Törnqvist:Phys. Rev. Lett.,67, 556 (1991).

    Article  ADS  Google Scholar 

  14. T. E. O. Ericson andG. Karl:Phys. Lett. B,309, 426 (1993).

    Article  ADS  Google Scholar 

  15. For a general review seeF. E. Close:Rep. Prog. Phys.,51, 833 (1988).

    Article  ADS  Google Scholar 

  16. UKQCD Collaboration (G. S. Bali, K. Schilling, A. Hulsebos, A. C. Irving, C. Michael andP. W. Stephenson):Phys. Lett. B,309, 378 (1993).

    Article  ADS  Google Scholar 

  17. V. N. Gribov: Lund preprints, LU-TP-91-7, March 1991 and LU-TP-91-15, May 1991.

  18. F. E. Close, Yu. L. Dokshitzer, V. N. Gribov, V. A. Khoze andM. G. Ryskin: Rutherford Appleton Lab. preprint RAL-93-049 (1993).

  19. Note the distinction between the ratio of couplings and the observed branching ratios. The former comparison has relative phase space factors removed.

  20. N. A. Törnqvist:Phys. Rev. Lett.,49, 624 (1982).

    Article  ADS  Google Scholar 

  21. P. Geiger andN. Isgur:Phys. Rev. D,47, 5050 (1993).

    Article  ADS  Google Scholar 

  22. One possibility is to fit the observed spectrum to a sequence of linear Regge trajectories—N. A. Törnqvist:Proceedings of LEAP'90,Stockholm, July 2–6, 1990, edited byP. Carlson et al. (World Scientific, 1991), p. 287; another standard of comparison is provided by\((c\bar c) and (b\bar b)\) spectra—F. E. Close (private communication).

  23. Mark III Collaboration (Z. Bai et al.):Phys. Rev. Lett.,65, 2507 (1990); DM2Collaboration, (J.-E. Augustin et al.):,Phys. Rev. D,46, 1951 (1992).

    Article  MATH  Google Scholar 

  24. Particle Data Group (K. Hisaka et al.):Review of Particle Properties, Phys. Rev. D,45, S1 (1992).

    Google Scholar 

  25. L.-P. Chen:Hadron '91, edited byS. Oneda andD. Peaslee (World Scientific 1992), p. 111.

  26. T. A. Armstrong et al.:Z. Phys. C,51, 351 (1991).

    Article  Google Scholar 

  27. Crystal Barrel Collaboration (M. Doser): these proceedings, p. 1815.

  28. LASS Collaboration (D. Aston et al.):Nucl. Phys. B,301, 525 (1988).

    Article  Google Scholar 

  29. GAMS Collaboration (D. Alde et al.):Nucl. Phys. B,269, 485 (1986);Phys. Lett. B,201, 160 (1988).

    Article  ADS  Google Scholar 

  30. D. Morgan andM. R. Pennington:Phys. Rev. D,48, 1185 (1993).

    Article  ADS  Google Scholar 

  31. M. Svec, A. de Lesquen andL. van Rossum:Phys. Rev. D,46, 949 (1992).

    Article  ADS  Google Scholar 

  32. G. Gidal:Proceedings of the VIII International Workshop on Photon-Photon Collisions, Shoresh, Israel, 1988, edited byU. Karshon (World Scientific, 1988), p. 182.

  33. A. I. Alekseev:Sov. Phys. JETP,34, 826 (1958);R. Barbieri, R. Gatto andR. Kögerler:Phys. Lett. B,60, 183 (1979).

    Google Scholar 

  34. Z. P. Li, F. E. Close andT. Barnes:Phys. Rev. D,43, 2161 (1991);F. E. Close andZ. P. Li:Z. Phys. C,54, 147 (1992);T. Barnes:Proceedings of the IX International Workshop on Photon-Photon Collisions, San Diego, 1992, edited byD. O. Caldwell andH. P. Paar (World Scientific, 1992), p. 263.

    Article  ADS  Google Scholar 

  35. D. Morgan andM. R. Pennington:Z. Phys. C,48, 623 (1992).

    Article  ADS  Google Scholar 

  36. T. Barnes:Proceedings of the International Workshop on Photon-Photon Collisions, San Diego, 1991, edited byD. O. Caldwell andH. P. Paar (World Scientific, 1992), p. 263.

  37. Crystal Ball Collaboration (K. Karch et al.):Z. Phys. C,54, 33 (1992).

    Article  Google Scholar 

  38. D. L. Scharre et al.:Phys. Lett. B,97, 329 (1980);C. Edwards et al.: Phys. Rev. Lett.,48, 458 (1982);49, 259 (1982).

    Article  ADS  Google Scholar 

  39. M. S. Chanowitz:Phys. Lett. B,187, 409 (1987).

    Article  ADS  Google Scholar 

  40. Crystal Barrel Collaboration (C. Amsler et al.):Phys. Lett. B,291, 347 (1992);Crystal Barrel Collaboration (M. Doser, J. Brose, S. Spanier) and E760Collaboration (E. A. Menichetti): these proceedings, p. 1815, 2013, 2227, 2321.

    Article  ADS  Google Scholar 

  41. Crystal Barrel Collaboration (C. Amsler et al.):Phys. Lett. B,297, 214 (1992); OBELIXCollaboration: these proceedings, p. 2279.

    Article  ADS  Google Scholar 

  42. See fig. 12 in ref.[30].

    Article  ADS  Google Scholar 

  43. See, for example,S. R. Sharpe, R. L. Jaffe andM. R. Pennington:Phys. Rev. D,30, 1013 (1984).

    Article  ADS  Google Scholar 

  44. C. Amsler et al.: ref.[41].

    Article  ADS  Google Scholar 

  45. D. Morgan:Nucl. Phys. A,543, 632 (1992).

    Article  ADS  Google Scholar 

  46. D. Morgan andM. R. Pennington:Phys. Lett. B,258, 444 (1991);Phys. Rev. D,48, 1185 (1993).

    Article  ADS  Google Scholar 

  47. For notations seeK. L. Au, D. Morgan andM. R. Pennington:Phys. Rev. D,35, 1633 (1987).

    Article  ADS  Google Scholar 

  48. S. J. Lindenbaum andR. S. Longacre:Phys. Lett. B,274, 492 (1992).

    Article  ADS  Google Scholar 

  49. I. J. R. Aitchison:Nucl. Phys. A,189, 417 (1972);K. L. Au et al.: ref.[47].

    Article  ADS  Google Scholar 

  50. P. V. Landshoff:Phys. Lett.,3, 116 (1962);V. V. Anisovich, A. A. Anselm andV. N. Gribov:Nucl. Phys.,38, 132 (1962);I.J.R. Aitchison:Nuovo Cimento A,35, 434 (1964);Phys. Rev. B,137, 1070 (1965);J. Phys. G,3, 121 (1977);V. V. Anisovich andA. A. Anselm:Sov. Phys. Usp.,9, 117 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  51. LASSCollaboration (D. Aston et al.):Nucl. Phys. B,296, 493 (1988).

    Article  Google Scholar 

  52. See, for example,D. Morgan:Phys. Lett. B,51, 71 (1974).

    Article  ADS  Google Scholar 

  53. GAMSCollaboration (M. Boutemeur et al.):Hadron '89, edited byF. Binon et al. (Editions Frontières, 1989), p. 119.

  54. See, for example,L. Montanet:Hadron '89, edited byF. Binon et al. (Editions Frontières, 1989), p. 669.

  55. W. Ochs: Max Planck Institut preprint MPI-Ph/Ph 91-35, June 1991 («»πN News Letters,3, 25 (1991)», edited byG. Höhler, W. Kluge andB. M. K. Nefkens).

  56. L. Montanet: private communication.

  57. For further discussion, seeB. R. Martin, D. Morgan andG. Shaw:Pion Pion Interactions in Particle Physics (Academic, New York, N.Y., 1976) and ref.[55].

    Google Scholar 

  58. Figure 10b) is adapted fromP. Estabrooks andA. D. Martin:Nucl. Phys. B,95, 322 (1975).

    Article  ADS  Google Scholar 

  59. W. D. Apel et al.:Phys. Lett. B,41, 542 (1973);N. M. Cason et al.: Phys. Rev. D,28, 1586 (1983);R. K. Clark et al.: Phys. Rev. D,32, 1061 (1985).

    Article  ADS  Google Scholar 

  60. M. Alston-Garnjost et al.:Phys. Lett. B,36, 152 (1971);S. D. Protopopescu et al.: Phys. Rev. D,7, 1279 (1973).

    Article  ADS  Google Scholar 

  61. H. Becker et al.:Nucl. Phys. B,150, 301 (1979);151, 46 (1979).

    Article  ADS  Google Scholar 

  62. M. R. Pennington andS. D. Protopopescu et al.:Phys. Rev. D,7, 2591 (1973).

    Article  ADS  Google Scholar 

  63. Given the large width, we set the mass to 1000 MeV as a «round number».

  64. B. Hyams et al.:Nucl. Phys. B,64, 134 (1973).

    Article  ADS  Google Scholar 

  65. T. Åkesson et al.:Nucl. Phys. B,264, 154 (1986).

    Article  ADS  Google Scholar 

  66. W. Wetzel et al.:Nucl. Phys. B,115, 208 (1976);P. F. Loverre et al.: Z. Phys. C,6, 187 (1990);A. Etkin et al.: Phys. Rev. D,25, 1786 (1982);B. V. Bolonkin et al.: Nucl. Phys. B,309, 426 (1988).

    Article  ADS  Google Scholar 

  67. S. Flatté:Phys. Lett. B,63, 224 (1976);N. N. Achasov, S. A. Devyanin andG. N. Shestakov:Phys. Lett. B,96, 168 (1980).

    Article  ADS  Google Scholar 

  68. a0(980) is strongly and conspicuously produced in a whole variety of reactions (e.g. it is the only scalar meson to produce a visible signal in γ reactions). This might be taken to indicate a minimally complicated composition−\((Q\bar Q)\) rather than\(((Q\bar Q)(Q\bar Q))\).

  69. D. Bauer, D. L. Borden, D. J. Miller andJ. Spenser: SLAC PUB 5816, June 1992.

  70. As illustration seeA. Palano:Proceedings of the IX International Workshop on Photon-Photon Collisions, San Diego, 1992, edited byD. O. Caldwell andH. P. Paar (World Scientific, 1992), p. 308.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D. Issues in light hadron spectroscopy. Nuov Cim A 107, 1883–1902 (1994). https://doi.org/10.1007/BF02823583

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823583

PACS 12.38

PACS 01.30.Cc

Navigation