Skip to main content
Log in

Plant hormones and plant growth regulators in plant tissue culture

  • Physiology
  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This is a short review of the classical and new, natural and synthetic plant hormones and growth regulators (phytohormones) and highlights some of their uses in plant tissue culture. Plant hormones rarely act alone, and for most processes— at least those that are observed at the organ level—many of these regulators have interacted in order to produce the final effect. The following substances are discussed: (a) Classical plant hormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene and growth regulatory substances with similar biological effects. New, naturally occurring substances in these categories are still being discovered. At the same time, novel structurally related compounds are constantly being synthesized. There are also many new but chemically unrelated compounds with similar hormone-like activity being produced. A better knowledge of the uptake, transport, metabolism, and mode of action of phytohormones and the appearance of chemicals that inhibit synthesis, transport, and action of the native plant hormones has increased our knowledge of the role of these hormones in growth and development. (b) More recently discovered natural growth substances that have phytohormonal-like regulatory roles (polyamines, oligosaccharins, salicylates, jasmonates, sterols, brassinosteroids, dehydrodiconiferyl alcohol glucosides, turgorins, systemin, unrelated natural stimulators and inhibitors), as well as myoinositol. Many of these growth active substances have not yet been examined in relation to growth and organized developmentin vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, F. B.; Morgan, O. W., Saltveit, M. E. Ethylene in plant biology, 2nd Ed. San Diego: Academic Press; 1992.

    Google Scholar 

  • Addicott, F. T. Abscission. Berkeley: University of California Press; 1982.

    Google Scholar 

  • Aldington, S.; Fry, S. Oligosaccharins. Adv. Bot. Res. 19:1–101; 1993.

    CAS  Google Scholar 

  • Aloni, R. The induction of vascular tissues by auxin and cytokinin. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:531–546.

    Google Scholar 

  • Apelbaum, A.; Burg, S. P. Altered cell microfibrillar orientation in ethylenetreatedPisum sativum stems. Plant. Physiol. 48:648–652; 1971.

    PubMed  CAS  Google Scholar 

  • Aribaud, M.; Carré, M.; Martin-Tanguy, J. Polyamine metabolism and in vitro cell multiplication and differentiation in leaf explants ofChrysanthemum morifolium Ramat. Plant Growth Regul. 15:143–155; 1994.

    Article  CAS  Google Scholar 

  • Arteca, R. N. Brassinosteroids. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:205–213.

    Google Scholar 

  • Bagni, N.; Altamura, M. N.; Biondi, S., et al. Polyamines and morphogenesis in normal and transgenic plant cultures. In: Roubelakis-Angelakis, K. A.; Tran Thanh Van K., ed. Morphogenesis in plants: molecular approaches. New York: Plenum Press; 1993:89–111.

    Google Scholar 

  • Bandurski, R. S.; Cohen, J. D.; Slovin, J., et al. Auxin biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:39–65.

    Google Scholar 

  • Beale, M. H.; Sponsel, V. M. Future directions in plant hormone research. J. Plant Growth Regul. 12:227–235; 1993.

    Article  CAS  Google Scholar 

  • Bearder, J. R. Plant hormones and other growth substances and their background, structures and occurrence. In: MacMillan, J., ed. Ency, plant physiol. N.S., Vol. 9. Berlin: Springer-Verlag; 9–112; 1980.

    Google Scholar 

  • Bewley, J. D.; Black, M. Physiology and biochemistry of seeds, vol. 2. Berlin: Springer-Verlag; 1982.

    Google Scholar 

  • Binns, A. N. Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Ann. Rev. Physiol. Plant Mol. Biol. 45:173–196; 1994.

    Article  CAS  Google Scholar 

  • Brock, T. G.; Kaufman, P. B. Growth regulators: an account of hormones and growth regulation. In: Bidwell, R. G. S., ed. Plant physiology, a treatise, Vol. X, Growth and development. San Diego: Academic Press; 1991:277–340.

    Google Scholar 

  • Chandler, S. F.; Thorpe, T. A. Hormonal regulation of organogenesis in vitro. In: Hormonal regulation of plant growth and development, Vol. 3. India: Agro Botanical Publ. 1986:1–27.

    Google Scholar 

  • Chen, Z.; Silva, H.; Klessig, D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Cook, C. E.; Whichard, L. P.; Wall, M. E., et al. Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for Witchweed (Striga lutea Lour.). J. Am. Chem. Soc. 94:6198–6199; 1972.

    Article  CAS  Google Scholar 

  • Coté, G. G.; Crain, R. C. Biochemistry of phosphoinositides. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356; 1993.

    Article  Google Scholar 

  • Darvill, A.; Augur, C.; Bergmann, C., et al. Oligosaccharins—oligosaccharides that regulate growth development and defence responses in plants. Glycobiology 2:181–198; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995;13–38.

    Google Scholar 

  • Davies, W. J.; Jones, H. G., ed. Abscisic acid: physiology and biochemistry. Oxford: Bios Sci. Publ.; 1991.

    Google Scholar 

  • Debergh, P. C.; Zimmerman, R. H., ed. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991.

    Google Scholar 

  • Emery, R. J. N.; Reid, D. M. Methyl jasmonate effect on ethylene synthesis and organ-specific senescence inHelianthus annuus seedlings. Plant Growth Regul. 18:213–222; 1996.

    Article  CAS  Google Scholar 

  • Evans, P. T.; Malmberg, R. L. Do polyamines have roles in plant development? Ann. Rev. Plant Physiol. Plant. Mol. Biol. 40:235–269; 1989.

    CAS  Google Scholar 

  • Evans, D. A.; Sharp, W. R.; Flick, C. E. Growth and behavior of cell cultures: embryogenesis and organogenesis. In: Thorpe, T. A., ed. Plant cell culture: methods and applications in agriculture. New York; Academic Press; 1981:45–113.

    Google Scholar 

  • Fabijan, D. M.; Plumb-Dhindsa, P.; Reid, D. M. Effects of two growth retardants on tissue permeability inPisum sativum andBeta vulgaris. Planta 152:481–486; 1981.

    Article  CAS  Google Scholar 

  • Fabijan, D.; Taylor, J. S.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Actions of gibberellins, cytokinins and ethylene. Physiol. Plant. 53:589–597; 1981.

    Article  CAS  Google Scholar 

  • Fry, S. C.; Street, H. E.: Gibberellin-sensitive cultures. Plant Physiol. 65:472–477; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Galston, A. W.; Kaur-Sawhney, R. Polyamines as endogeneous growth regulators. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:158–178.

    Google Scholar 

  • Gamble, P. E.; Mullet, J. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur. J. Biochem. 160:117–121; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O. L.; LaRue, T. A. G. Ethylene production by plant cell cultures. The effects of auxins, abscisic acid, and kinetin on ethylene production in suspension cultures of rose andRuta cells. Plant Physiol. 48:399–401; 1971.

    PubMed  CAS  Google Scholar 

  • Gamborg, O. L.; Murashige, T.; Thorpe, T. A., et al. Plant tissue culture media. In Vitro 12:473–478; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T. Selenieted forms of indolylacetic acid: new powerful synthetic auxins. Across Organics Acta 1:65–66; 1995.

    CAS  Google Scholar 

  • Gaspar, T.; Kevers, C.; Bouillenne, H., et al. Ethylene production in relation to rose micropropagation. In: Clysters, H.; De Proft, M.; Marcelle, R., et al., ed. Biochemical and physiological aspects of ethylene production in lower and higher plants. Dordrecht: Kluwer Academic Publishers; 1989:303–312.

    Google Scholar 

  • Gaspar, T.; Kevers, C.; Hausman, J., et al. Peroxidase activity and endogenous free auxin during adventitious root formation. In: Lumsden, P. J.; Nicholas, J. R.; Davies, W. J., ed. Physiology, growth and development of plants in culture. Dordrecht: Kluwer Academic Publishers; 1994:289–298.

    Google Scholar 

  • George, E. Plant propagation by tissue culture. Part 1. The technology. Edington: Exegetics Ltd.; 1993.

    Google Scholar 

  • Gray, D. J.; Conger, B. V. Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions ofDactylis glomerata (Gramineae). Plant Cell Tissue Organ Cult. 4:123–133; 1985.

    Article  CAS  Google Scholar 

  • Gross, D. Plant growth regulatory substances both of microbial and plant origin. Chem. Plant. Prot. 7:1–49; 1991.

    CAS  Google Scholar 

  • Gross, D.; Parthier, B. Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13:93–114; 1994.

    Article  CAS  Google Scholar 

  • Hagen, S. R.; Muneta, P.; Augustin, J., et al. Stability and utilization of picloram, vitamins and sucrose in a tissue culture medium. Plant Cell Tissue Organ Cult. 25:45–48; 1991.

    Article  CAS  Google Scholar 

  • Hausman, J.; Kevers, C.; Gaspar, T. Involvement of putrescine in the inductive rooting phase of poplar shootsin vitro. Physiol. Plant. 92:201–206; 1994.

    Article  CAS  Google Scholar 

  • Henson, I. E. Inhibition of abscisic acid accumulation in shoots of pearl millet (Pennisetum americanum L.) following induction of chlorosis by norflurazon. Z. Pflanzenphysiol. 114:35–43; 1984.

    CAS  Google Scholar 

  • Hirai, N.; Yamamuro, M.; Koshimiza, K., et al. Accumulation of phenylpropanoids in the cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by low temperature treatment, and the effect of precedent exposure to high-intensity light. Plant Cell Physiol. 35:691–695; 1994.

    CAS  Google Scholar 

  • Huxter, T. J.; Reid, D. M.; Thorpe, T. A. Shoot intiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol. Plant. 53:319–326; 1981.

    Article  CAS  Google Scholar 

  • Iwamura, H. Cytokinin antagonists: synthesis and biological activity. In: Mok, D. W. S.; Mok, M. C., ed. Cytokinins: chemistry, activity, and function. Boca Raton: CRC Press; 1994:43–55.

    Google Scholar 

  • Jarvis, B. C.; Ali, A. H. N.; Shaheed, A. I. Auxin and boron in relation to the rooting response and aging of mung bean cuttings. New Phytol. 95:509–518; 1983.

    Article  CAS  Google Scholar 

  • Jensen, R. A. Tyrosine and phenylalanine biosynthesis: relationship between alternate pathways, regulation and subcellular location. In: Conn, E. E., ed. Recent advances in plant phytochemistry, Vol. 20. New York and London: Plenum Press; 1986:57–81.

    Google Scholar 

  • John, M. C.; Amasino, R. M. Expression of an Agrobacterium Ti-plasmid gene involved in cytokinin biosynthesis in regulated by virulence loci and induced by plant phenolic compounds. J. Bacteriol. 170:790–795; 1988.

    PubMed  CAS  Google Scholar 

  • Kallas, P.; Meier-Augenstein, W.; Schildknecht, H. The structure-activity relationship of the turgorin PLMF 1 in the sensitive plantMinosa pudica L. J. Plant Physiol. 136:225–230; 1990.

    CAS  Google Scholar 

  • Kende, H. Ethylene biosynthesis. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 43:439–463; 1993.

    Google Scholar 

  • Kevers, C.; Boyer, N.; Courduroux, Y. C., et al. The influence of ethylene on proliferation and growth of rose shoot cultures. Plant Cell Tissue Organ Cult. 28:175–181; 1992.

    Article  CAS  Google Scholar 

  • Krikorian, A. D. Hormones in tissue culture and micropropagation. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:774–796.

    Google Scholar 

  • Kuhnle, J. A.; Fuller, G.; Corse, J., et al. Antisenescent activity of natural cytokinins. Plant Physiol. 41:14–21; 1977.

    Article  CAS  Google Scholar 

  • Kumar, P. P.; Reid, D. M.; Thorpe, T. A. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons ofPinus radiata in vitro. Physiol. Plant. 69:244–252; 1987.

    Article  CAS  Google Scholar 

  • Label, P.; Lelu, M.-A. Influence of exogenous abscisic acid on germination and plantlet conversion frequencies of hybrid larch somatic embryos (Larix × leptoeuropaea). Plant Growth Regul. 15:175–182; 1994.

    Article  CAS  Google Scholar 

  • Lamproye, A.; Hofinger, M.; Berthon, J. Y., et al. [Benzo(b)selenienyl-3] acetic acid: a potent synthetic auxin in somatic embryogenesis. C. R. Acad. Sci. Paris, Sér. III. 311:127–132; 1990.

    CAS  Google Scholar 

  • Lance, B.; Durley, R. C.; Reid, D. M., et al. Metabolism of [3H] gibberellin A20 in light- and dark-grown tobacco callus culture. Plant. Physiol. 58:387–392; 1976a.

    PubMed  CAS  Google Scholar 

  • Lance, B.; Reid, D. M.; Thorpe, T. A. Endogenous gibberellins and growth of tobacco callus cultures. Physiol. Plant. 36:287–292; 1976b.

    Article  CAS  Google Scholar 

  • Libbenga, K. R.; Mennes, A. M. Hormone binding and signal transduction. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:272–297.

    Google Scholar 

  • Liu, J.; Mukherjee, I.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant. 78:268–276; 1990.

    Article  CAS  Google Scholar 

  • Liu, J. H.; Reid, D. M. Auxin and ethylene-stimulated adventitious rooting in relation to tissue sensitivity to auxin and ethylene production in sunflower hypocotyls. J. Exp. Bot. 43:1191–1198; 1992.

    Article  CAS  Google Scholar 

  • Maeda, E.; Thorpe T. A. Effects of various auxins on growth and shoot formation on tobacco callus. Phytomorphology 29:146–155; 1979.

    CAS  Google Scholar 

  • Mandava, N. B. Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39:23–52; 1988.

    Article  CAS  Google Scholar 

  • McGaw, B. A.; Burch, L. R. Cytokinin biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:98–117.

    Google Scholar 

  • McKeon, T. A.; Fernandez-Maculet, J. C.; Yang, S. F. Biosynthesis and metabolism of ethylene. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:118–139.

    Google Scholar 

  • Milborrow, B. V.; Pryce, R. J. The brassins. Nature 243:46; 1973.

    Article  CAS  Google Scholar 

  • Nooden, L. D.; Leopold, A. C. Senescence and aging in plants. San Diego: Academic Press; 1988.

    Google Scholar 

  • Nour, K. A.; Thorpe, T. A. The effect of the gaseous state on bud induction and shoot multiplication in Eastern white cedar. Physiol. Plant. 90:163–172; 1994.

    Article  CAS  Google Scholar 

  • Orr, J.; Lynn, D. G. Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 98:343–352; 1992.

    PubMed  CAS  Google Scholar 

  • Pharis, R. P.; Ruichuan, Z.; Jiang, I. B. J., et al. Differential efficacity of gibberellins in flowering and vegetative shoot growth, including heterosis and inherently rapid growth. In: Karssen, C.; Van Loon, L.; Vreugdenhil, D., ed. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:13–27.

    Google Scholar 

  • Pierpoint, W. S. Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv. Bot. Res. 20:163–235; 1994.

    CAS  Google Scholar 

  • Powell, G. K.; Hommes, N. K.; Kuo, J., et al. Inducible expression of cytokinin biosynthesis inAgrobacterium tumefaciens by plant phenolics. Mol. Plant-Microbe Interact. 1:235–242; 1988.

    PubMed  CAS  Google Scholar 

  • Price, A. H.; Taylor, A.; Ripley, S. J., et al. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rademacker, W. Biochemical effects of plant growth retardants. In: Gausman, H. W., ed. Plant biochemical regulators. New York: Marcel Dekker, Inc.: 1992:169–200.

    Google Scholar 

  • Raskin, I. Role of salicyclic acid in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:439–463; 1992.

    Article  CAS  Google Scholar 

  • Rastogi, R.; Sawhney, V. K. Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill.). I. Levels of polyamines and their biosynthesis in normal and mutant flower. Plant Physiol. 93:439–445; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ravniker, M.; Gogala, N. Regulation of potato meristem development by jasmonic acidin vitro. Plant Growth Regul. 9:233–236; 1990.

    Article  Google Scholar 

  • Reid, D. M.; Beall, F. D.; Pharis, R. P. Environmental cues in plant development. In: Bidwell, R. G. S., ed. Plant physiology, a treatise, Vol. X, Growth and development. San Diego: Academic Press; 1991:65–181.

    Google Scholar 

  • Reinbothe, S.; Mollenhauer, B.; Reinbothe, C. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D. R.; Flinn, B. S.; Webb, D. T., et al. Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78:355–360; 1990.

    Article  CAS  Google Scholar 

  • Robertson, A. J.; Reaney, M. J. T.; Wilen, R. W., et al. Effects of abscisic acid metabolites and analogs on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell cultures. Plant Physiol. 105:823–830; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rock, C. D.; Quatrano, R. S. Hormones during seed development. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:671–697.

    Google Scholar 

  • Ryan, C. A. The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol. Biol. 19:123–133; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, C. A.; Farmer, E. E. Oligosaccharide signals in plants: a current assessment. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:651–674; 1991.

    Article  CAS  Google Scholar 

  • Sabater, B. Hormonal regulation of senescence. In: Purohit, S. S., ed. Hormonal regulation of plant growth and development, Vol. 1. India: Agro Botanical Publ.; 1985:169–217.

    Google Scholar 

  • Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Ann. Rev. Plant Physiol. Mol. Biol. 44:459–489; 1993.

    Article  Google Scholar 

  • Slocum, R. D.; Flores, H. E. Biochemistry and physiology of polyamines in plants. Boca Raton: CRC Press; 1991.

    Google Scholar 

  • Smith, T. A. Polyamines. Ann. Rev. Plant Physiol. 36:117–143; 1985.

    CAS  Google Scholar 

  • Sponsel, V. M. The biosynthesis and metabolism of gibberellins in higher plants. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995;66–97.

    Google Scholar 

  • Steen, D. A.; Chadwick, A. V. Ethylene effect in pica stem tissue. Evidence of microtubule mediation. Plant Physiol. 67:460–466; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Strnad, M.; Peters, W.; Beck, E., et al. Immunodetection and identification ofN 6-(o-hydroxybenzylamino) purine as a naturally occurring cytokinin inPopulux × canadensis Moench cvRobusta leaves. Plant Physiol. 99:74–80; 1992.

    PubMed  CAS  Google Scholar 

  • Tamas, I. A. Hormonal regulation of apical dominance. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:572–597.

    Google Scholar 

  • Thompson, M. R.; Thorpe, T. A. Metabolic and non-metabolic roles of carbohydrates. In: Bonga, J. M.; Durzan, D. J., ed. Tissue culture in forestry, Vol. 1 Dordrecht: Martinus Nijhoff/Dr. W. Junk Publ.; 1986:89–112.

    Google Scholar 

  • Thorpe, T. A. The current status of plant tissue culture. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science Publishers; 1990;1–33.

    Google Scholar 

  • Thorpe, T. A.; Murashige, T. Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48:277–285: 1970.

    CAS  Google Scholar 

  • Tran Thanh Van, K.; Toubart, P.; Cousson A., et al. Manipulation of morphogenic pathways of tobacco explants by oligosaccharins. Nature 314:615–617; 1985.

    Article  Google Scholar 

  • Tran Thanh Van, K.; Trinh, T. H. Organogenic differentiation. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science Publishers; 1990:34–53.

    Google Scholar 

  • Tung, P.; Hooker, T. S.; Tampe, P. A., et al. Jasmonic acid: effects on growth and development of isolated tomato roots cultured in vitro. Int. J. Plant Sci. (in press).

  • Turbicio, A. F.; Campers, J. L.; Figueras, X., et al. Polyamines and morphogenesis in monocots. In: Roubelakis-Angelakis, K. A.; Tran Thanh Van, K., ed. Morphogenesis in plants: molecular approaches. New York: Plenum Press; 1993:113–135.

    Google Scholar 

  • Vasil, I. K.; Thorpe, T. A., ed. Plant cell and tissue culture. Dordrecht: Kluwer Academic Publishers; 1994.

    Google Scholar 

  • Veen, H.; van de Geijn, S. C. Mobility and ionic form of silver as related to longevity of cut carnations. Planta. 140:93–96; 1978.

    Article  CAS  Google Scholar 

  • Venis, M. A.; Napier, R. M. Auxin receptors: recent developments. J. Plant Growth Regul. 10:329–340; 1991.

    Article  CAS  Google Scholar 

  • Vesely, J.; Havlicek, L.; Strnad, M., et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 224:771–786; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Walton, C. D.; Li Y. Abscisic acid biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:140–157.

    Google Scholar 

  • Wilen, R. W.; Hays, D. B.; Mandel, R. M., et al. Competitive inhibition of abscisic acid-regulated gene expression by stereoisomeric acetylenic analogs of abscisic acid. Plant Physiol. 101:469–476; 1993.

    PubMed  CAS  Google Scholar 

  • Woo, Y. M.; Wick, S. M. Effects of benlate 50 DF on microtubes of cucumber root tip cells and on growth of cucumber seedlings. Amer. J. Bot. 82:496–503; 1995.

    Article  CAS  Google Scholar 

  • Wright, S. T. C. The effect of 6-benzyladenine and leaf-aging treatments on the levels of stress-induced ethylene emanating from witled wheat leaves. Planta 144:179–188; 1979.

    Article  CAS  Google Scholar 

  • Ziv, M. The use of growth retardants for the regulation and acclimatization ofin vitro plants. In: Karssen, C. M.; Van Loon, L. C.; Vreugdenhil, D., ed. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:809–817.

    Google Scholar 

  • Ziv, M.; Ariel, T. Bud proliferation and plant regeneration in liquid-cultured Philodendron treated with ancymidol and paclobutrazol. J. Plant Growth Regul. 10:53–57; 1991.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspar, T., Kevers, C., Penel, C. et al. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell.Dev.Biol.-Plant 32, 272–289 (1996). https://doi.org/10.1007/BF02822700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822700

Key words

Navigation