Skip to main content
Log in

Experimental systematics of particle lifetimes and widths

Экспериментальная систематика времен жиэни и щирин злементарных частиц

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

By comparing the lifetimes of the metastable (τ>10−17 s) elementary particles with one another, we find experimentally that these lifetimes occur both as ratios of 2 and as ratios of α=e 2/ħc, with supposedly dissimilar particles grouped together, and with no experimental counterexamples. When short-lived (τ ∼ 10−22 s) meson and baryon resonances are studied, it is found that the width is a key identification symbol. Grouping together resonances that have similar (narrow) widths, we obtain very accurate linear mass intervals. This mapping can be extended to include essentially all of the observed narrow-width meson and baryon resonances in a comprehensive pattern. These results suggest a weak-binding-energy approach to elementary-particle structure. This is the same conclusion that emerges from a broad overview of the successes of the quark model. The empirical level spacings point to the existence of two basic mass quanta, a spinless quantum μ ⋍ 70 MeV and a spin-1/2 quantumS ⋍ 330 MeV. Electromagnetic properties of nucleons also indicate the existence of the 330 MeV mass quantum. In reconciling a 330 MeV mass quantumS with a 939 MeV nucleon mass and a 1795 MeV\(\bar pn\) bound-state mass, we are led to the Fermi and Yang formulation of the nucleon rather than to the formulation of Gell-Mann and Zweig. The observed spectrum of narrow-width meson and baryon resonances can be reproduced by forming suitable combinations of the quanta μ andS. Broad-width resonances are interpreted as rotational excitations. Basis states 3 ≡ 3μ and 4 ≡ 4μ, initially selected to account for observed level spacings in hyperon resonances, are shown to have significance with respect to strangeness quantum numbers and with respect to basic characteristics of baryon and meson resonances. These basis states can also be used to account phenomenologically for the observed factors of 2 and α in the lifetimes of the metastable resonances. The predictive power of the present linear systematics is illustrated in a «meson excitation tower» for narrow-width resonances. First published in 1970, this excitation tower is shown with separate groupings for the resonances that were identified in 1970 and for the resonances that have subsequently been identified.

Riassunto

Paragonando l’un l’altra le vite medie delle particelle elementari metastabili (τ>10−17 s), si ottiene sperimentalmente che queste vite medie ricorrono sia come fattori di 2 che diα=e 2/ħc, con particelle supposte diverse riunite insieme e senza alcuna controesempio sperimentale. Quando si studiano le risonanze mesoniche e barioniche con vite medie brevi (τ ∼ 10−22 s), si trova che l’ampiezza è il simbolo chiave per l’identificazione. Riunendo insieme le risonanze che hanno ampiezze (strette) simili, si ottengono intervalli di massa lineari molto accurati. Si può estendere questa rappresentazione fino ad includere essenzialmente tutte le risonanze mesoniche e barioniche ad ampiezze strette osservate in un modello di vasta portata. Questi risultati suggeriscono un accostamento alla struttura delle particelle dal punto divista di una energia di legame debole. Questa conclusione è la stessa che emerge da un ampio sguardo sui successi del modello a quark. La spaziatura empirica dei livelli indica l’esistenza di due quanti di massa principali, in quantoμ ⋍ 70 MeV privo di spin e un quantoS ⋍ 330 MeV con spin 1/2. Anche le proprietà elettromagnetiche dei nucleoni indicano l’esistenza del quanto di massa di 330 MeV. Nel conciliare un quantoS di massa di 330 MeV con una massa del nucleone di 939 MeV e una massa dello stato legato antiprotone-neutrone di 1795 MeV, si è condotti alla formulazione di Fermi e Yang del nucleone, piuttosto che alla formulazione di Gell-Mann e Zweig. Si può riprodurre lo spettro osservato delle risonanze mesoniche e barioniche ad ampiezza stretta formando adeguate combinazioni dei quantiμ eS. Si sono interpretate le risonanze ad ampiezza larga come eccitazioni rotazionali. Si mostra che gli stati base 3 Ξ 3μ e 4 Ξ 4μ, inizialmente selezionati per tenere conto delle spaziature dei livelli osservate nelle risonanze iperoniche, hanno significato rispetto si numeri quantici di stranezza e rispetto alle caratteristiche fondamentali delle risonanze barioniche e mesoniche. Si possono usare questi stati base anche per tenere conto fenomenologicamente dei fattori 2 eα osservati nelle vite medie delle risonanze metastabili. Si è illustrata la capacità di predizione della presente sistematica lineare in una «torre di eccitazione di mesoni» per risonanze ad ampiezza stretta. Si mostra questa torre di eccitazione, pubblicata per la prima volta nel 1970, con raggruppamenti separati per le risonanze che crano identificate nel 1970 e per le risonanze che sono state identificate in seguito.

Реэюме

Сравнивая времена жиэни метастабильных (τ>10−17 сек) злемен-тарных частиц друг с другом, мы находим зкспериментально, что зти времена жиэни относятся либо как 2, либо какα=e 2/ħc, в случае неодинаковых частиц, сгруппиро-ванных вместе, и при отсутствии зкспериментальных противопокаэаний. Когда иэучаются короткоживушие (τ ∼ 10−22 сек) меэонные и барионные реэонансы, то обнаружено, что щирина представляет ключевой символ для идентификации. Груп-пируя вместе реэонансы, которые имеют аналогичные (уэкие) щирины, мы получаем очень точные линейные массовые интервалы. Это отображение может быть расщи-рено, чтобы включить, по сушеству, все наблюденные меэонные и барионные реэо-нансы с малой щириной в зту модель. Эти реэультаты предполагают приближение слабой знергии свяэи для структуры злементарной частицы. Этот факт представляет тот же вывод, который воэникает иэ обшей точки эрения на успехи модели кварков. Эмпирические расстояния между уровнями укаэывают на сушествование двух ос-новных массовых квантов, бесспинового квантаμ⋍70 MзB и квантаS⋍330 MзB со спином 1/2. Электромагнитные свойства нуклонов также укаэывают на сушество-вание кванта с массой 330 MзB. При согласовании массового 330 MзB квантаS с нуклонной массой 939 MзB и свяэанным состоянием\(\bar pn\) с массой 1795 MзB, мы приходим к формулировке нуклова Ферми и Янга, а не формулировке Гелл-Манна и Цвейга. Наблюденный спектр меэонных и барионных реэонансов с малыми щири-нами может быть воспроиэведен с помошью обраэования соответствуюших комби-наций квантовμ иS. Реэонансы с больщими щиринами интерпретируются, как ротационные воэбуждения. Покаэывается, что основные состояния 3 Ξ 3μ и 4 Ξ 4μ, первоначально отобранные для общяснения наблюдаемых расстояний между уров-нями в гиперонных реэонансах, имеют эначение для квантовых чисел странности и для основных характеристик барионных и меэонных реэонансов. Эти основные состояния могут быть также испольэованы для феноменологического общяснения наблюденных факторов 2 иα в отнощениях времен жиэни метастабильных реэо-нансов. Предскаэываюшая способность настояшей линейной систематики иллюстри-руется на примере « бащни воэбуждений меэонов » для реэонансов с малыми щири-нами. Впервые опубликованная в 1970, зта бащня воэбуждений была покаэана в случае отдельных группировох для реэонансов, которые были идентифицированы в 1970, и для реэонансов, которые были идентифицированы впоследствии.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. P. Söding, J. Bartels, A. Barbaro-Galtieri, J. Enstrom, T. Lasinski, A. Rittenberg, A. Rosenfeld, T. Trippe, N. Barash-Schmidt, C. Bricman, V. Chaloupka andM. Roos:Phys. Lett.,39 B, 1 (1972).

    Google Scholar 

  2. The ω → πππ decay is summarized in ref. (1) The ω → ππ decay is observed as a ρ-ω interference dip (G. Goldhaber, W. Butler, D. Coyne, B. Hall, J. Mac Naughton andG. Trilling:Phys. Rev. Lett.,23, 1351 (1969)), and also as an interference peak (S. Hagopian, V. Hagopian, E. Bogart andW. Selove:Phys. Rev. Lett.,25, 1050 (1970);B. Ratcliff, F. Bulos, R. Carnegie, E. Kluge, D. Leith, H. Lynch, B. Richter, H. Williams andS. Williams:Phys. Lett.,38 B, 345 (1972)), with roughly the same width as the ω → πππ decay.

    Google Scholar 

  3. B. T. Feld:Models of Elementary Particles, Chap. 4 (Waltham, Mass., 1969).

  4. M. H. Mac Gregor:Lett. Nuovo Cimento,4, 1309 (1970), Table VI.

    Article  Google Scholar 

  5. See ref. (3), p. 158. Without calculations, this is just a conjecture.

  6. The neutron lifetime is fromC. Christensen, A. Nielsen, A. Bahnsen, W. Brown andB. Rustad:Phys. Rev. D,5, 1628 (1972); the other lifetimes are from ref. (1).

    Article  ADS  Google Scholar 

  7. SeeL. B. Okun:Weak Interactions of Elementary Particles, Chap. 6 (London, 1965); alsoJ. Bernstein:Elementary Particles and Their Currents (San Francisco, Cal., 1968), p. 128.

  8. SeeM. H. Mac Gregor:Lett. Nuovo Cimento,1, 759 (1971), Table I.

    Article  Google Scholar 

  9. M. H. Mac Gregor:Nuovo Cimento,18 A, 169 (1973).

    Article  ADS  Google Scholar 

  10. M. H. Mac Gregor: UCRL 73328, July 30 (1971),A basis set for elementary particles. This paper has now been divided into two parts:Light-quark hadron spectroscopy: experimental systematics and angular momentum systematics; Light-quark hadron spectroscopy; a geometric model for S-states. Also seeNuovo Cimento,8 A, 235 (1972);Lett. Nuovo Cimento,4, 211, 1043, 1249, 1309 (1970);1, 427, 437, 759 (1971);2, 846 (1971):3, 197 (1972);5, 135 (1972).

  11. Binding-energy systematics are summarized inM. H. Mac Gregor:Lett. Nuovo Cimento,3, 197 (1972).

    Article  Google Scholar 

  12. In Fig. 6, the π0, π±, η, M and δ resonances are as quoted in ref. (1) The η′ mass is the average of ref. (1) andJ. Danburg, S. Borenstein, G. Kalbfleisch, R. Strand, V. VanderBurg, J. Chapman andR. Kiang: ref. (13), p. 91; the η′ width is fromD. Binnie, L. Camilleri, A. Duane, D. Garbutt, J. Holmes, W. Jones, J. Keyne, M. Lewis, I. Siotis, P. Upadhyay, I. Burton andJ. McEwen:Phys. Lett.,39 B, 275 (1972). The Danburg analysis establishedJ P=0 for the η′. An analysis byM. Aguilar-Benitez, S. Chung, R. Eisner andN. Samios:Phys. Rev. D,6, 29 (1972), establishedJ P=0 for the M, and arguments in their paper (Table XIV) clearly separate the M from the η′ experimentally. An analysis byH. Atherton, B. Franek, B. French, B. Ghidini, H. Hilpert, J. Kinson, L. Mandelli, J. Moebes, K. Myklebost, B. Nellen, E. Quercigh andV. Simak:Phys. Lett.,43 B, 249 (1973), establishedJ P=0 for the δ; other evidence for the δ is given byC. Defoix, A. Do Nascimento, J. O’Neall, J. Siaud, R. Bizzarri, L. Dobrzynski, S. Ganguli, L. Montanet, S. Reucroft andT. Yamagata:Nucl. Phys.,44 B, 125 (1972). The δ0 is fromD. L. Cheshire, R. Jacobel, R. Lamb, F. Peterson, W. Hoffman andA. Garfinkel: ref. (13), p. 124, with the mass of the δ0, which was measured relative to that of the η′, adjusted here to match the mass of the η′ shown in Fig. 6; a peak similar to the δ0 peak was also reported byL. Holloway, B. Huld, U. Koetz, U. Kruse, M. Jordan, D. Mortata, L. Nodulman, R. Wojslaw, S. Bernstein, S. Margulies andD. McLeod: ref. (13), p. 133. The δ peak can be observed on pageS88 of ref. (14).

    Google Scholar 

  13. American Institute of Physics Conference Proceedings, No. 8,Particles and fields, Subseries 3,Experimental Meson Spectroscopy, 1972, edited byA. H. Rosenfeld andK. W. Lai.

  14. A. Rittenberg, A. Barbaro-Galtieri, T. Lasinski, A. Rosenfeld, T. Trippe, M. Roos, C. Bricman, P. Söding, N. Barash-Schmidt andC. Wohl:Rev. Mod. Phys.,43, No. 2, Part II (April 1971) (supplement).

  15. In Fig. 7, the ϕ(1019), π N , D, E and KK resonances are as quoted in ref. (1) (the π N is listed on pageS16 at the front of ref. (14)). The MMS(1153) is a CERN missing-mass peak that can be observed on pageS88 of ref. (14) (the parameters quoted here were obtained by fitting a Gaussian curve to this peak). The X0(1148) peak is fromR. W. Jacobel, D. Cheshire, R. Lamb, F. Peterson, A. Garfinkel andE. Hoffman:Phys. Rev. Lett.,29, 671 (1972), who call attention to the similarity between the X0(1148) and MMS(1153) peaks. The A(1289) peak is fromD. Crennell, U. Karshon, K. Lai, J. O’Neall andJ. Scarr:Phys. Rev. Lett.,22, 1327 (1969); this peak is referred to in the summary ofG. Fox: ref. (13) (see p. 318 and Fig. 18). The ϕ → KK decay appears to have an anomalously high energy and narrow width because of phase-space constraints imposed by the low-Q spin-1 decay into two spinless kaons (see ref. (10)); the ϕ → πππ decay (M. Aguilar-Benitez, S. Chung, R. Eisner andN. Samios:Phys. Rev. D,6, 29 (1972)) appears at a lower mass and with a broader width. The ϕ in its πππ decay mode appears to be related to the H-meson listed in ref. (1).

    Google Scholar 

  16. L. J. Gutay, J. Scharenguivel, N. Fuchs, J. Gaidos, D. Miller, P. Meiere andB. Harms:Nucl. Phys.,27 B, 486 (1971) (see p. 490). This dip can be noted in Fig. 1 on p. 62 and 63 of ref. (13).

    Article  ADS  Google Scholar 

  17. S. Almehed andC. Lovelace:Nucl. Phys.,40 B, 157 (1972);R. Ayed, P. Bareyre andY. Lemoine:Zero-strangeness baryon states below 2.5 GeVmass, paper presented at theXVI International Conference on High-Energy Physics, Batavia, Ill., Sept. 6–13, 1972; DAVIES 70 in ref. (1) (which has the narrow width that we expect for anS-state).

    Article  ADS  Google Scholar 

  18. The Λ(1673)30 mass and width are fromA. Barbaro-Galtieri: LBL-1366, October 1972, a review presented at Batavia (see ref. (17)).

    Article  ADS  Google Scholar 

  19. The Σ(1756)65 mass and width are fromA. Barbaro-Galtieri (ref. (18)).

    Article  ADS  Google Scholar 

  20. The hyperon levels of Table VI, except as noted here, are taken directly from ref. (1). Indirect confirmation for the existence of the weak Λ(1327) Γ<25 level is given inM. H. Mac Gregor:Lett. Nuovo Cimento,1, 437 (1971). The mass value for the Λ(1402) level is the value quoted at the back of ref. (1). From the decays Λ(1402)→Σπ (100%) and Σ(1385)→Λπ (90%), these two resonances should probably be interchanged in the excitation columns of Table VI, which would give a better fit to the 70 MeV mass grid. The Σ(1472) level is an average of the two values quoted for PAN 70 in ref. (1). The Σ(1682) level is Blumenfeld 69 in ref. (1); it has a decay to K 0 L +proton, which suggests a K0+=498+1189=1687 MeV mass shell excitation. The Λ(1673) and Σ(1756) levels are from ref. (18,19). The Ξ(1606) is Ross 72, the Ξ(1814) is Badier 65, and the Ξ(1956) is Badier 71, all in ref. (1); the Ξ(1532) is fromC. Baltay, A. Bridgewater, W. Cooper, L. Gershwin, M. Habibi, N. Yeh andA. Gaigalas:Phys. Lett.,42 B, 129 (1972). These Ξ-resonances were selected solely on the basis of their narrow widths. It is of some interest to note that the Σ(1620)S level was predicted from the present systematics to be anS-state resonance (M. H. Mac Gregor:Lett. Nuovo Cimento,4, 1043 (1970), Table III) some time before the analysis of Kim 71 in ref. (1) showed that it is in fact anS-state. Also, the Ξ(1606) level, which fits naturally into the excitation sequences of Table VI, appeared long after these excitation sequences were worked out.

    Google Scholar 

  21. See ref. (3), p. 362; the quark model is discussed in Chap. 15–17.

  22. J. Franklin:Phys. Rev.,172, 1807 (1968), who comments on p. 1816 as follows: « The agreement of quark predictions with experiment could be regarded as spectacular, and yet virtually every prediction really makes sense only if quarks are not too heavy or if the binding is not too strong ».

    Article  ADS  Google Scholar 

  23. P. Vinciarelli:Lett. Nuovo Cimento,4, 905 (1972).

    Article  Google Scholar 

  24. S. D. Drell andK. Johnson:Phys. Rev. D,6, 3248 (1973); also seeL. Jones:The continuing search for quarks, inPhysics Today, Vol.26, No. 5 (May 1973).

    Article  ADS  Google Scholar 

  25. The analysis ofL. Gutay et al. in ref. (16), which showed anS-wave dip at 560 MeV of four standard deviations, also showed a pronounced dip at 660 MeV (the 660 MeV dip was in fact theraison d’être for their article). This dip occurs only in the isotopicspinI=0 amplitudes, and its appearance in the isotropic component of the amplitude (see the analysis described in ref. (16)) suggests a spin-1 interference. From the systematics described in ref. (10), spinor pairsSS occur with spin angular momentumS=1 inI=0 states and withS=0 inI=1 states. Thus the dip observed byGutay follows this rule.

    Article  ADS  Google Scholar 

  26. A π+p→π+πΔ++ experiment byM. Alston-Garnjost, A. Barbaro-Galtieri, S. Flatté, J. Friedman, G. Lynch, S. Protopopescu, M. Rabin andF. Solmitz:Phys. Lett.,36 B, 152 (1971), Fig. 1c, revealed a small ππ invariant-mass peak at 665 MeV. A statistical analysis of this peak (see ref. (9)) showed that it is roughly a four-standard-deviation effect (although the background subtraction is difficult to assess accurately). A recent paper,S. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. Flatté, J. Friedman, T. Lasinski, G. Lynch, M. Rabin andF. Solmitz:Phys. Rev. D,7, 1279 (1973), shows in Fig. 18 this same ππ spectrum plotted as a function of momentum transfer. Some peaking can be observed at 660 MeV, and it appears to exhibit a strong dependence on momentum transfer.

    Article  ADS  Google Scholar 

  27. Many recent experiments do not show an A2 dip. However, a recent reanalysis of the original CERN A2 data (see p.S88 of ref. (14)) byW. Kienzle:Reanalysis of the A 2 spectrum in the 7 GeV/cdata of the missing-mass spectrum (MMS, 1967), indicates that these data still show a significant dip. Three recent π+p experiments all show some structure at about 1310 MeV:I. J. Bloodworth, W. Jackson, J. Prentice andT. Yoon:Nucl. Phys.,37 B, 203 (1972);K. Barnham, G. Abrams, W. Butler, D. Coyne, G. Goldhaber, B. Hall, J. MacNaughton andG. Trilling:Phys. Rev. Lett.,26, 1494 (1971);Bonn-Durham-Nijmegen-Paris (E.P.)-Torino Collaboration:Nucl. Phys.,16 B, 221 (1970).Bloodworth et al. comment as follows: « The appearance of some structure in this and in two other experiments (Barnham and BDNPT) could clearly be due to statistical fluctuations, although it seems surprising that the effect occurs in the same few bins ». These bins are the same bins in which the original CERN data showed a dip. Also, one experiment,D. J. Crennell, U. Karshon, K. Lai, J. Scarr andI. Skillicorn:Phys. Rev. Lett.,20, 1318 (1968), shows a narrow K S K S peak, K S K S (1311)Γ21, at this same energy. In the Crennell experiment, the angular distribution of the K S K S spectrum changed abruptly at 1311 MeV from an isotropic distribution to a fore-and-aft distribution. This is a result that might be expected if the « A2 effect »—dip or peak—is due to the production of a narrow spin-2 resonance at 1310 MeV (see Table XLI in ref. (10)). Since all of these A2 anomalies occur at the same energy (1310 MeV), we can conclude that thelocation of the « A2 effect » is well established, even though theexistence of the « A2 effect » is not well established.

  28. It has not been determined experimentally if the E-meson is a spin-0 or a spin-1 resonance (see ref. (1)). However, since it has isotopic spinI=0, we expect from the rule cited in ref. (25) that it has spinS=1. Also, we expect the broad width of the E to be reduced experimentally to match the narrow width of the associatedI=1 KK(1425) resonance (see Fig. 7). It should be noted that the D-meson, which we also expect to have a narrow width, was quoted in ref. (14) with a width Γ=(33±4) MeV. However, a recent measurement of its 4π decay mode (Boesebeck 71 in ref. (1)) gave the width of the D as Γ=(10±10) MeV.

    Google Scholar 

  29. M. H. Mac Gregor:Lett. Nuovo Cimento,4, 1249 (1970), Table I.

    Article  Google Scholar 

  30. M. H. Mac Gregor: UCRL 72495 (May 28, 1970),Experimental evidence for I=0 ππresonances at 649, 870and 1298 MeVand an I=1 πππresonance near 900 MeV, unpublished, SLAC preprint list PPF-70 (June 5, 1970).

  31. D. L. Cheshire, R. Jacobel, R. Lamb, F. Peterson, E. Hoffman andA. Garfinkel:Phys. Rev. Lett.,28, 520 (1972). They indicate that this may be a π+ππ0 enhancement. Also, seeD. L. Cheshire et al.: ref. (12,13), andL. Holloway et al.: ref. (12,13), for recent reports on this resonance.

    Article  ADS  Google Scholar 

  32. This CERN missing-mass peak can be observed in the Figure on p.S88 of ref. (14), although the original CERN reports do not show the MMS(1079) peak with the clarity that is shown for the MMS(1153) peak. The parameters shown here for the MMS(1079) peak were obtained by fitting a Gaussian curve to this peak. Other evidence for a peak at 1080 MeV is given in the paper ofA. R. Dzierba, W. Shephard, N. Biswas, N. Cason, P. Johnson, V. Kenney andJ. Poirier:Phys. Rev. D,2, 2544 (1970). Also,H. W. Atherton et al.: ref. (12), have reported aJ P=1+ πππ peak M±(1076)Γ36.

  33. R. Morse, B. Oh, W. Walker, T. Johnson, J. Prentice andT. Yoon:Nucl. Phys.,43 B, 77 (1972).

    Article  ADS  Google Scholar 

  34. B. T. Feld:Models of Elementary Particles (Waltham, Mass., 1969), p. 289.

  35. The DEF is a broad missing-mass peak at about 450 MeV noted byJ. Baniags, J. Berger, J. Duflo, L. Goldzahl, M. Cottereau andF. Lefebvres:Nucl. Phys.,28 B, 509 (1971); and byR. Thun, H. Blieden, G. Finocchiaro, J. Kirz, C. Nef, D. Bowen, D. Earles, W. Faissler, D. Garelick, M. Gettner, M. Glaubman, B. Gottschalk, G. Lutz, J. Moromisato, E. Shibata, Y. Tang andE. von Goeler:Phys. Rev. Lett.,28, 1215 (1972);N. Cason, J. Andrews, N. Biswas, T. Groves, E. Harrington, P. Johnson, V. Kenney, J. Poirier andW. Shephard:Phys. Rev. D,1, 851 (1970), Fig. 36 and the discussion on p. 858, found a statistically significant peaking in theI=0 ππ amplitude at about 400 MeV, which was enhanced when placed in opposition to the rho-meson; this suggests spinS=1 for the DEF. The ππ(1250) is a broadS-wave ππ enhancement observed byJ. Carroll, R. Diamond, M. Firebaugh, W. Walker, J. Matthews, J. Prentice andT. Yoon:Phys. Rev. Lett.,28, 318 (1972). It appears similar to the broadS-wave ππ enhancements ɛ and S*, which in the present formulation seem to beS=1,L=1,J=0 rotational excitations.

    Article  ADS  Google Scholar 

  36. R. L. Cool, G. Giacomelli, E. Jenkins, T. Kycia, B. Leontic, K. Li andJ. Teiger:Phys. Rev. Lett.,29, 1630 (1972).

    Article  ADS  Google Scholar 

  37. P. E. Argan, G. Audit, N. de Botton, J.-M. Laget, J. Martin, S. Schuhl andG. Tamas:Phys. Rev. Lett.,29, 1191 (1972)

    Article  ADS  Google Scholar 

  38. L. Gray, P. Hagerty andT. Kalogeropoulos:Phys. Rev. Lett.,26, 1491 (1971).

    Article  ADS  Google Scholar 

  39. It should be noted thatW. Chinowsky andG. Kojoian, on experimental grounds, predicted this mass for the\(\bar pn\) bound state several years ago:Nuovo Cimento,43 A, 684 (1966), see p. 697.

    Article  ADS  Google Scholar 

  40. E. Fermi andC. N. Yang:Phys. Rev.,76, 1739 (1949).

    Article  ADS  Google Scholar 

  41. M. Gell-Mann:Phys. Lett.,8, 214 (1964);G. Zweig: CERN Reports Th 401 and Th 412 (1964).

    Article  ADS  Google Scholar 

  42. S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. Flatté, J. Friedman, T. Lasinski, G. Lynch, M. Rabin andF. Solmitz:Phys. Rev. D,7, 1279 (1973).

    Article  ADS  Google Scholar 

  43. M. H. Mac Gregor:Lett. Nuovo Cimento,4, 211 (1970).

    Article  Google Scholar 

  44. The mass quantumμ=70 MeV was discussed many years ago byY. Nambu:Progr. Theor. Phys.,7, 595 (1952). However, without the special-relativistic equations which relateμ andS, and without a theory for binding energies in the Λ-hyperon, the universality of the quantumμ is not experimentally apparent, and this line of inquiry was not followed up.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Work performed under the auspices of the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mac Gregor, M.H. Experimental systematics of particle lifetimes and widths. Nuov Cim A 20, 471–507 (1974). https://doi.org/10.1007/BF02821977

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821977

Navigation