Skip to main content
Log in

K-ras mutations and allelic loss at 5q and 18q in the development of human pancreatic cancers

  • Original Articles
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Summary

Conclusion

Our findings have implications for early diagnosis and for the identification of patients at increased risk.

Background

Invasive cancers of the pancreas frequently are preceded by and associated with a spectrum of preneoplastic changes. We investigated the presence of K-ras mutations and allelic loss at 5q and 18q loci in preneoplastic lesions associated with nine cases of invasive pancreatic ductal carcinomas.

Methods

We precisely microdissected 115 foci of normal, preinvasive, and invasive foci from paraffinembedded sections.

Results

  1. 1.

    K-ras mutations occur early in the pathogenesis of pancreatic adenocarcinoma. Mutations were identified in multiple preneoplastic foci associated with all six cases in whichras mutations were present in the corresponding invasive cancers, including nearly all foci of mucous cell and atypical hyperplasia, in some cases of papillary hyperplasia (40%), and in one example of morphologically normal epithelium.

  2. 2.

    Ras mutations in preneoplastic foci are widespread, occur distant from the invasive tumor, and may present multiple mutations. Two, and in one case three, different types of K-ras mutations were found in separate preneoplastic foci from three individual cases.

  3. 3.

    Evidence for a “second hit” in theras gene (i.e., loss of wild-type allele or amplification of the mutant allele) was present in some tumors and may be associated with the invasive process.

  4. 4.

    In contrast toras mutations, limited data suggest that loss of heterozygosity (LOH) at 5q and 18q are relatively late events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warshaw AL, Castillo CF-D. Pancreatic carcinoma.N Engl J Med 1992; 326: 455–465.

    Article  PubMed  CAS  Google Scholar 

  2. Albores-Saavedra J, Vuitch F, Henson DE. Exocrine pancreas, in:Pathology of Incipient Neoplasia. Henson DE, Albores-Saavedra J, eds: W. B. Saunders, Philadelphia, 1993; pp. 182–190.

    Google Scholar 

  3. Bos JL.ras oncogenes in human cancer: a review.Cancer Res 1989; 49: 4682–4689.

    PubMed  CAS  Google Scholar 

  4. Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988; 53: 549–554.

    Article  PubMed  CAS  Google Scholar 

  5. Hohne MW, Halatsch ME, Kahl GF, et al. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma.Cancer Res 1992; 52: 2616–2619.

    PubMed  CAS  Google Scholar 

  6. Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer.Cancer Res 1992; 52: 6696–6698.

    PubMed  CAS  Google Scholar 

  7. Scarpa A, Capelli P, Mukai K, et al. Pancreatic adenocarcinomas frequently show p53 gene mutations.Am J Pathol 1993; 142: 1534–1543.

    PubMed  CAS  Google Scholar 

  8. Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions.Cancer Res 1994; 54: 1556–1560.

    PubMed  CAS  Google Scholar 

  9. Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase 18 chain reaction analysis and allele-specific oligonucleotide hybridization.Am J Pathol 1993; 143: 545–554.

    PubMed  CAS  Google Scholar 

  10. Oreffo VI, Lin HW, Padmanabhan R, et al. K-MS and p53 point mutations in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanoneinduced hamster lung tumors.Carcinogenesis 1993; 14: 451–455.

    Article  PubMed  CAS  Google Scholar 

  11. Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutation of chromosome 5q21 genes in FAP and colorectal cancer patients.Science 1991; 253: 665–669.

    Article  PubMed  CAS  Google Scholar 

  12. Kinzler KW, Nilbert MC, Su LK. et al. Identification of FAP locus genes from chromsome 5q21.Science 1991; 253: 661–665.

    Article  PubMed  CAS  Google Scholar 

  13. Mitsudomi T, Viallet J, Mulshine JL, et al. Mutations ofras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer cell lines.Oncogene 1991; 6: 1353–1362.

    PubMed  CAS  Google Scholar 

  14. Seymour AB, Hruban RH, Redston M, et al. Allelotype of pancreatic adenocarcinoma.Cancer Res 1994; 54: 2761–2764.

    PubMed  CAS  Google Scholar 

  15. Hung J, Kishimoto Y, Sugio K, et al. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma.JAMA 199S; 273: 558–563.

  16. Sugio K, Kishimoto Y, Virmani AK et al. K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas.Cancer Res 1994; 54: 5811–5815.

    PubMed  CAS  Google Scholar 

  17. Whetsell L, Maw G, Nadon N, et al. Polymerase chain reaction microanalysis of tumors from stained histological slides.Oncogene 1992; 7: 2355–2361.

    PubMed  CAS  Google Scholar 

  18. Spirio L, Nelson L, Ward K, et al. A CA-repeat polymorphism close to the adenomatous polyposis cold (APC) gene offers improved diagnostic testing for familial APC.Am J Hum Genet 1993; 52: 286–296.

    PubMed  CAS  Google Scholar 

  19. Risinger JI, Boyd J. dinucleotide repeat polymorphism in the human DCC gene at chromosome 18q21.Hum Mol Genet 1992; 1: 657.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang W, Kahn SM, Guillem JG, et al. Rapid detection ofras oncogenes in human tumors: applications to colon, esophageal, and gastric cancer.Oncogene 1989; 4: 923–928.

    PubMed  CAS  Google Scholar 

  21. Iland HJ, Todd AV. Estimation of the proportions of mutant and normal N-ras alleles by allele specific restriction analysis.Nucleic Acids Res 1992; 20: 620.

    Article  PubMed  CAS  Google Scholar 

  22. Weinberg RA. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis.Cancer Res 1989; 49: 3713–3721.

    PubMed  CAS  Google Scholar 

  23. Kozuka S, Sassa R, Taki T, et al. Relation of pancreatic duct hyperplasia to carcinoma.Cancer 1979; 43: 1418–1428.

    Article  PubMed  CAS  Google Scholar 

  24. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development.N Engl J Med 1988; 319: 525–532.

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki H, Nishii H, Takahashi H, et al. Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma.Cancer Res 1993; 53: 1906–1910.

    PubMed  CAS  Google Scholar 

  26. Duggan BD, Felix JC, Muderspach LI, et al. Early mutational activation of the c-Ki-ras oncogene in endometrial, carcinoma.Cancer Res 1994; 54: 1604–1607.

    PubMed  CAS  Google Scholar 

  27. Tabata T, Fujimori T, Maeda S, et al. The role ofRas mutation in pancreatic cancer, precancerous lesions, and chronic pancreatitis.Int J Pancreatol 1993; 14: 237–244.

    PubMed  CAS  Google Scholar 

  28. Lemoine NR, Jain S, Hughes CM, et al. Ki-ras oncogene activation in preinvasive pancreatic cancer.Gastroenterology 1992; 102: 230–236.

    PubMed  CAS  Google Scholar 

  29. Yanagisawa A, Ohtake K, Ohashi K, et al. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation.Cancer Res 1993; 53: 953–956.

    PubMed  CAS  Google Scholar 

  30. DiGiuseppe JA, Hruban RH, Offerhaus GJ, et al. Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma [see comments].Am J Pathol 1994; 144: 889–895.

    PubMed  CAS  Google Scholar 

  31. Caldas C, Hahn SA, Hruban RH, et al. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia.Cancer Res 1994; 54: 3568–3573.

    PubMed  CAS  Google Scholar 

  32. Ekbom A, McLaughlin JK, Karlsson BM, et al. Pancreatitis and pancreatic cancer: a population-based study.J Natl Cancer Inst 1994; 86: 625–627.

    Article  PubMed  CAS  Google Scholar 

  33. Slaughter DP, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium: clinical implications of multicentric origin.Cancer 1954; 6: 963–968.

    Article  Google Scholar 

  34. Grunewald K, Lyons J, Frohlich A, et al. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas.Int J Cancer 1989; 43: 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  35. Motojima K, Urano T, Nagata Y, et al. Detection of point mutations in the Kirsten-ras oncogene provides evidence for the multicentricity of pancreatic carcinoma.Ann Surg 1993; 217: 138–143.

    Article  PubMed  CAS  Google Scholar 

  36. van Heerden JA, ReMine WH, Weiland LH, et al. Total pancreatectomy for ductal adenocarcinoma of the pancreas: Mayo Clinic experience.Am J Surg 1981; 142: 308–311.

    Article  PubMed  Google Scholar 

  37. Ihse I, Lilja P, Arnesjo B, et al. Total pancreatectomy for cancer. An appraisal of 65 cases.Ann Surg 1977; 186: 675–680.

    Article  PubMed  CAS  Google Scholar 

  38. Tada M, Ohashi M, Shiratori Y, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease [see comments].Gastroenterology 1996; 110: 227–231.

    Article  PubMed  CAS  Google Scholar 

  39. Finney RE, Bishop JM. Predisposition to neoplastic transformation caused by gene replacement of H-ras1.Science 1993; 260: 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  40. Parada LF, Land H, Weinberg RA, et al. Cooperation between gene encoding p53 tumour antigen andras in cellular transformation.Nature 1984; 312: 649–651.

    Article  PubMed  CAS  Google Scholar 

  41. McKie AB, Filipe MI, Lemoine NR. Abnormalities affecting the APC and MCC tumour suppressor gene loci on chromosome 5q occur frequently, in gastric cancer but not in pancreatic cancer.Int J Cancer 1993; 55: 598–603

    Article  PubMed  CAS  Google Scholar 

  42. Hahn SA, Hoque AT, Moskaluk CA, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer.Cancer Res 1996; 56: 490–494.

    PubMed  CAS  Google Scholar 

  43. Hahn SA, Schutte M, Hoque AT, et al DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. [see comments].Science 1996; 271: 350–353.

    Article  PubMed  CAS  Google Scholar 

  44. Cho KR, Vogelstein B. Genetic alteractions in the adenoma—carcinoma sequence.Cancer 1992; 70s: 1727–1731.

    Article  Google Scholar 

  45. Urban T, Ricci S, Grange JD, et al. Detection of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas [see comments].J Natl Cancer Inst 1993; 85: 2008–2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugio, K., Molberg, K., Albores-Saavedra, J. et al. K-ras mutations and allelic loss at 5q and 18q in the development of human pancreatic cancers. Int J Gastrointest Canc 21, 205–217 (1997). https://doi.org/10.1007/BF02821606

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821606

Key Words

Navigation