Skip to main content
Log in

Glutamate receptor subtype expression in human postmortem brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Antibodies to functional glutamate receptor subunits were utilized as probes to characterize glutamatergic receptors in human postmortem brain tissue. Crude membranes from rat, monkey, and various dissected human postmortem brain regions were fractionated by SDS-PAGE and electrotransferred to nitrocellulose. Using antisera raised against rat antigens for AMPA/kainate (GluR1-3) and kainate (GluR5) glutamate receptor subunits, we have been able to detect specific bands on Western blots in rat, monkey, and human postmortem brain tissue. These antisera recognized bands at approx 105 kDa for the GluR1-3 and 115 kDa for GluR5 in humans, monkeys, and rats. All of these glutamate receptor subtypes appear to be glycosylated. We observed varying levels of expression in the human brain areas examined, with the highest degree of expression in the hippocampus and temporal cortex for AMPA/kainate receptor subunits, and in the cortex and cerebellum for the kainate receptor subunits. In addition, considerable heterogeneity in expression was observed between patient samples with these antisera, as well as with antisera to the structural protein, NCAM. Our studies indicate that glutamatergic receptor protein changes related to various human disease states may be examined in human postmortem tissue by Western blotting techniques utilizing these antibodies raised to the rat protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bettler B., Boulter J., Hermans-Borgmeyer I., O’Shea-Greenfield A., Deneris E. S., Moll C., Borgmeyer U., Hollmann M., and Heinemann S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development.Neuron 5, 583–595.

    Article  PubMed  CAS  Google Scholar 

  • Bettler B., Egebjerg J., Sharma G., Pecht G., Hermans-Borgmeyer I., Moll C., Stevens C. F., and Heinemann S. (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit.Neuron 8, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone C. D., Levey A. I., Martin L. J., Price D. L., and Huganir R. L. (1992) Immunological detection of glutamate receptor subtypes in human central nervous system.Ann. Neurol. 31, 680–683.

    Article  PubMed  CAS  Google Scholar 

  • Boulter J., Hollmann M., O’Shea-Greenfield A., Hartley M., Deneris E., Maron C., and Heinemann S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes.Science 249, 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Breese, C. R., Bartell T. M., Rogers S. W., Browning M. D., and Leonard S. (1992) Characterization of the glutamate receptor subunit GluR1 in human postmortem tissue.Neurosci. Abst. 45, 2.

    Google Scholar 

  • Choi D. W. (1992) Excitotoxic cell death.J. Neurobiol. 23, 1261–1276.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge G. L. and Bliss T. V. P. (1987) NMDA receptors—their role in long-term potentiation.Trends Neurosci. 10, 288–293.

    Article  CAS  Google Scholar 

  • Cowburn R. F., Hardy J. A., and Roberts P. J. (1990) Glutamatergic neurotransmission in Alzheimer’s disease.Biochem. Soc. Trans. 18, 390–392.

    PubMed  CAS  Google Scholar 

  • Dieckmann C. L. and Tzagoloff A. (1985) Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b.J. Biol. Chem. 260, 1513–1520.

    PubMed  CAS  Google Scholar 

  • Dure L. S., Young A. B., and Penney J. B (1991) Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington’s disease.Ann. Neurol. 30, 785–793.

    Article  PubMed  Google Scholar 

  • Egebjerg J., Bettler B., Hermans-Borgmeyer I., and Heinemann S. (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA.Nature 351, 745–748.

    Article  PubMed  CAS  Google Scholar 

  • Hampson D. R., Huang X. P., Oberdorfer M. D., Goh J. W., Auyeung A., and Wenthold R. J. (1992) Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody.Neuroscience 50, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P. J., McLaughlin D., and Kerwin R. W. (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia.Lancet 337, 450–452.

    Article  PubMed  CAS  Google Scholar 

  • Herb A., Burnashev N., Werner P., Sakmann B., Wisden W., and Seeburg P. H. (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits.Neuron 8, 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., O’Shea-Greenfield A., Rogers S. W., and Heinemann S. (1989) Cloning by functional expression of a member of the glutamate receptor family.Nature 342, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., Hartley M., and Heinemann S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition.Science 252, 851–853.

    Article  PubMed  CAS  Google Scholar 

  • Hosford D. A., Crain B. J., Cao Z., Bonhaus D. W., Friedman A. H., Okazaki M. M., Nadler J. V., and McNamara J. O. (1991) Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus.J. Neurosci. 11, 428–434.

    PubMed  CAS  Google Scholar 

  • Huntley G. W., Rogers S. W., Moran T., Janssen W., Archin N., Vickers J. C., Cauley K., Heinemann S. F., and Morrison J. H. (1993) Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7.J. Neurosci. 13, 2965–2981.

    PubMed  CAS  Google Scholar 

  • Keinanen K., Wisden W., Sommer B., Werner P., Herb A., Verdoorn T. A., Sakmann B., and Seeburg P. H. (1990) A family of AMPA-selective glutamate receptors.Science 249, 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Kerwin R., Patel S., and Meldrum B. (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem.Neuroscience 39, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Kidd S., Baylies M. K., Gasic G. P., and Young M. W. (1989) Structure and distribution of the Notch protein in developingDrosophila.Genes. Dev. 3, 1113–1129.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P., Wahl P., Schousboe A., Madsen U., and Hansen J. J. (1993) Excitatory amino acid research in Alzheimer’s disease: enhancement and blockade of receptor functions.Biochem. Soc. Trans. 21, 102–106.

    PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lambolez B., Audinat E., Bochet P., Crepel F., and Rossier J. (1992) AMPA receptor subunits expressed by single Purkinje cells.Neuron 9, 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Leonard S., Logel J., Luthman D., Casanova M., Kirch D., and Freedman R. (1993) Biological stability of mRNA isolated from human postmortem brain collections.Biol. Psych. 33, 456–466.

    Article  CAS  Google Scholar 

  • Martin L. J., Blackstone C. D., Levey A. I., Huganir R. L., and Price D. L. (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain.Neuroscience 53, 327–358.

    Article  PubMed  CAS  Google Scholar 

  • Masu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. (1991) Sequence and expression of a metabotropic glutamate receptor.Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan D. T. (1991) Agonist-and antagonist-preferring N-methyl-D-aspartate receptors and independent activation of their ion channels inExcitatory Amino Acids (Meldrum B. S., Moroni F., Simon R. P., and Woods J. H., eds.), Raven, New York, pp. 203–211.

    Google Scholar 

  • Nakanishi N., Shneider N. A., and Axel R. (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties.Neuron 5, 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W. (1989) Excitatory amino acids and neuropsychiatric disorders.Biol. Psych. 26, 505–525.

    Article  CAS  Google Scholar 

  • Petralia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J. Comp. Neurol. 318, 329–354.

    Article  PubMed  CAS  Google Scholar 

  • Rogers S. W., Hughes T. E., Hollmann M., Gasic G. P., Deneris E. S., and Heinemann S. (1991) The characterization and localization of the glutamate receptor subunit GluR1 in the rat brain.J. Neurosci. 11, 2713–2724.

    PubMed  CAS  Google Scholar 

  • Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B., Kohler M., Sprengel R., and Seeburg P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels.Cell 67, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B. and Seeburg P. H. (1992) Glutamate receptor channels: novel properties and new clones.TIPS 13, 291–296.

    PubMed  CAS  Google Scholar 

  • Tocco G., Annala A. J., Baudry M., and Thompson R. F. (1992) Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus.Behav. Neural Biol. 58, 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn T. A., Burnashev N., Monyer H., Seeburg P. H., and Sakmann B. (1991) Structural determinants of ion flow through recombinant glutamate receptor channels.Science 252, 1715–1718.

    Article  PubMed  CAS  Google Scholar 

  • Vickers J. C., Huntley G. W., Edwards A. M., Moran T., Rogers S. W., Heinemann S. F., and Morrison J. H. (1993) Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefontal cortex of the macaque monkey.J. Neurosci. 13, 2982–2992.

    PubMed  CAS  Google Scholar 

  • Wenthold R. J., Yokotani N., Doi K., and Wada K. (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain.J Biol. Chem. 267 501–507.

    PubMed  CAS  Google Scholar 

  • Werner P., Voigt M., Keinanen K., Wisden W., and Seeburg P. H. (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells.Nature 351 742–744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breese, C.R., Leonard, S.S. Glutamate receptor subtype expression in human postmortem brain. J Mol Neurosci 4, 263–275 (1993). https://doi.org/10.1007/BF02821558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821558

Index Entries

Navigation