Skip to main content
Log in

The energy levels of pi-muonium

Энергетические уровни пи-мюония

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

An experiment was recently proposed and planned to measure the energy levels of the π-μ atom (pi-muonium). In this note expressions are obtained for all QED contributions to the 2S 1/2, 2P 1/2 and 2P 3/2 level shifts of pi-muonium accurate to 10−4 eV. Detailed discussions are given for the recoil corrections to the spinor-scalar system by means of an effective-potential method. The contributions of the total hadronic vacuum polarization and the weak interaction are also discussed. If the 2S-2P energy level difference in pi-muonium can be measured accurately to 10−4 eV, one can obtain an independent determination of the pion charge radius. We also discuss briefly the π-e and the π-π atoms which are also produced in K decay.

Riassunto

Si è recentemente proposto e progettato un esperimento per misurare i livelli energetici dell’atomo π-μ (pi-muonio). In questo articolo si ottengono delle espressioni per tutti i contributi QED agli spostamenti dei livelli 2S 1/2, 2P 1/2, 2P 3/2 del pi-muonio, valutati con la precisione di 10−4 eV. Si discutono dettagliatamente le correzioni di rinculo del sistema spinore-scalare per mezzo di un metodo a potenziale effettivo. Si discutono anche i contributi della polarizzazione adronica totale del vuoto e delle interazioni deboli. Se si riesce a misurare con la precisione di 10−4 eV la differenza fra i livelli energetici 2S-2P nel pi-muonio, si può ottenere una determinazione indipendente del raggio della carica del pione. Si discutono brevemente anche gli atomi π-e e π-π, anch’essi prodotti nel decadimento del K.

Реэюме

Недавно был предложен зксперимент для иэмерения знергетических уровней π-μ атома (пи-мюония). В зтой работе получены выражения для всех вкладов квантовой злектродинамики в сдвиги уровней 2S 1/2, 2P 1/2 и 2P 3/2 пи-мюония с точностью 10−4 зВ. Проводится подробное обсуждение зффектов отдачи в спинор-скалярной системе, испольэуя метод зффективного потенциала. Также обсуждаются полная поляриэация адронного вакуума и слабое вэаимодействие. Если раэность знергетических уровней 2S-2P в пи-мюонии может быть иэмерена с точностью 10−4 зВ, то можно получить неэависимое определение радиуса пионного эаряда. Мы также вкратце рассматриваем π-e и π-π атомы, которые также обраэуются при К распаде.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schwartz: private communication. The pi-muonium experiment will be done at the Brookhaven National Laboratory.

  2. L. L. Nemenov:Sov. Journ. Nucl. Phys.,15, 582 (1972).

    Article  Google Scholar 

  3. See, for example,G. W. Erickson andD. R. Yennie:Ann. of Phys.,35, 271 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  4. C. N. Brown, C. R. Canizares, W. E. Cooper, A. M. Eisner, G. J. Feldman, C. A. Lichtenstein, L. Litt, W. Lockeretz, V. B. Montana andF. M. Pipkin:Phys. Rev. Lett.,26, 991 (1971).

    Article  ADS  Google Scholar 

  5. C. F. Cho andJ. J. Sakurai:Lett. Nuovo Cimento,2, 7 (1971);D. N. Levin andS. Okubo:Phys. Rev. D,6, 3149 (1972).

    Article  Google Scholar 

  6. P. Shepard: report presented at the1972 Meeting of the American Physical Society (unpublished).

  7. A brief report on the result of calculating the 2S 1/2-2P 1/2 shift is given byU. Bar-Gadda andC. F. Cho:Phys. Lett.,46 B, 95 (1973).

    Article  ADS  Google Scholar 

  8. See, for example,H. A. Bethe andE. E. Salpeter:Quantum Mechanics of One-and Two-Electron Atoms (Berlin, 1957).

  9. For a good review on the hydrogen and positronium energy levels, seeS. J. Brodsky andS. D. Drell:Ann. Rev. Nucl. Sci.,20, 147 (1970).

    Article  ADS  Google Scholar 

  10. For a good discussion of the Breit equation and Breit interaction, see ref. (8).

  11. E. E. Salpeter:Phys. Rev.,87, 328 (1952).

    Article  MATH  ADS  Google Scholar 

  12. T. Fulton andP. C. Martin:Phys. Rev.,95, 811 (1954).

    Article  ADS  Google Scholar 

  13. J. Schwinger:Proc. Nat. Acad. Sci.,37, 452, 455 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Grotch andD. R. Yennie:Rev. Mod. Phys.,41, 350 (1969).

    Article  ADS  Google Scholar 

  15. R. Karplus andA. Klein:Phys. Rev.,87, 328 (1952);T. Fulton andR. Karplus:Phys. Rev.,93, 1109 (1954).

    Article  Google Scholar 

  16. We follow the notations ofBjorken andDrell (ref. (15)).H μ(P),H π(−P) are given in eqs. (1.13) and (9.48) of ref. (15).

  17. See, for example,J. D. Bjorken andS. D. Drell:Relativistic Quantum Mechanics (New York, N. Y., 1964).

  18. In the limitm π → ∞ one obtains from eq. (16) the solutions for a spinor particle in a Coulomb potential (ref. (15)), and in the limitm π → ∞, one obtains the solution for a scalar particle in a Coulomb potential (ref. (16)). Also using a quasi-potential method,I. R. Todorov (Trieste preprint IC/71/75, unpublished) obtained the same α2 Ryd splitting of the energy levels for spinor-scalar system.

  19. L. I. Schiff:Quantum Mechanics (New York, N. Y., 1949).

  20. G. Källén andA. Sabry:Mat. Fys. Medd. Dan. Vid. Selsk,29, No. 17 (1955).

  21. J. K. Harriman:Phys. Rev.,101, 594 (1956).

    Article  ADS  Google Scholar 

  22. C. Schwartz andJ. J. Tiemann:Ann. of Phys.,6, 178 (1959).

    Article  ADS  Google Scholar 

  23. R. Gatto:Nuovo Cimento,28, 658 (1963); see alsoE. Cremmer andM. Gourdin:Nucl. Phys.,12 B, 383 (1969).

    Article  MathSciNet  Google Scholar 

  24. There is a misprint in the sign of this term in ref. (7) But the numerical value of this term is negligible for our problem.

    Article  ADS  Google Scholar 

  25. A. Litke, G. Hanson, A. Hofmann, J. Koch, L. Law, M. F. Law, J. Leong, R. Little, R. Madaras, H. Newman, J. M. Paterson, R. Pordes, K. Strauch, G. Tarnopolsky andR. Wilson:Phys. Rev. Lett.,30, 1189 (1973) and references therein.

    Article  ADS  Google Scholar 

  26. A. Bramòn, E. Etim andM. Greco: preprint LNF-72/17 (to be published).

  27. The CEA data (ref. (21) may be parametrized asσ(s)≃24.3(α 2/s)(s/25 (GeV)2)1/2 for 4 (GeV)2>s>25 (GeV)2.

    Article  ADS  Google Scholar 

  28. H. L. Anderson, C. K. Hargrove, E. P. Hincks, J. D. McAndrew, R. J. McKee, R. D. Barton andD. Kessler:Phys. Rev.,187, 1565 (1969);M. S. Dixit, H. L. Anderson, C. K. Hargrove, R. J. McKee, D. Kessler, H. Mes andA. C. Thomson:Phys. Rev. Lett.,27, 878 (1971).

    Article  ADS  Google Scholar 

  29. Using the parametrization of ref. (22), one can show that the hadronic vacuum polarization contribution to the 2S-2P level in Pb is about 1/2 keV fors<4 (GeV)2.

  30. In ref. (7) the total hadronic vacuum polarization contribution was not calculated. However, as we show here, this contribution is not very important.

    Article  ADS  Google Scholar 

  31. The mathematical similarity between eq. (33) and the hydrogen Lamb-shift calculation byBethe (ref. (24). is not surprising because the Breit interaction considers the exchange of a transverse photon between two charged particles in a bound state, while Bethe’s calculation involves the exchange of a transverse photon between an electron in a bound state and itself.

    Article  ADS  Google Scholar 

  32. H. A. Bethe:Phys. Rev.,72, 339 (1947).

    Article  MATH  ADS  Google Scholar 

  33. For clear discussion on this point, seeJ. J. Sakurai:Advanced Quantum Mechanics (New York, N. Y., 1967). See also ref. (15).

  34. For a good review of gauge field models of weak interactions, seeE. S. Abers andB. W. Lee:Phys. Rep.,9 c, 1 (1973).

    Article  ADS  Google Scholar 

  35. S. Weinberg:Phys. Rev. Lett.,19, 1264 (1967).

    Article  ADS  Google Scholar 

  36. H. Georgi andS. L. Glashow:Phys. Rev. Lett.,28, 1494 (1972).

    Article  ADS  Google Scholar 

  37. R. Jackiw andS. Weinberg:Phys. Rev. D,5, 2396 (1972).

    Article  ADS  Google Scholar 

  38. It can be shown that the π+π S-wave scattering length contribution is at least 20% of the total 2S-2P shift in π-π atom. The π+π S-wave scattering length is a very poorly measured quantity (see ref. (30)). A precise determination of the scattering length should be very useful in testing current algebra predictions.

  39. J. L. Basdevant et al.:Status of the ππ phenomenology, preprint PAR-LPTHE 73.8 (unpublished).

  40. Ref. (15), see alsoJ. M. Jauch andF. Rohrlich:The Theory of Photons and Electrons (Reading, Mass., 1955).

  41. R. P. Feynman:Phys. Rev.,76, 796 (1949), Appendix A.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the National Science Foundation, Grant No. GP-39158.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, C.F. The energy levels of pi-muonium. Nuov Cim A 23, 557–580 (1974). https://doi.org/10.1007/BF02821234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821234

Navigation