Skip to main content
Log in

Alteration of cell-wall composition ofFusarium oxysporum by copper stress

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A strain ofFusarium oxysporum tolerated copper in the growth medium at concentrations up to 600 mg/L. The optimum growth was obtained at 200 mg Cu/L. The mycelium acquired a blue color in the presence of copper. The copper content of isolated cell walls obtained from mycelium grown in the presence of 600 mg Cu/L was 1.5 times higher than that of cell walls obtained from mycelium grown at 200 mg Cu/L and it contained 2.2 and 3.3% copper at 200 and 600 mg Cu/L, respectively. The amount of protein and total sugars increased in both the mycelium and its isolated cell walls in the presence of copper in the growth medium, chitin was also increased in the cell wall, reaching its maximum amount at 200 mg Cu/L— about 2.4 times higher than without copper. Most of amino acid concentrations in the cell wall were increased in the presence of 200 mg Cu/L and decreased above this concentration. Isoleucine, leucine, tyrosine, phenylalanine, and arginine showed the highest increase at this concentration. The altered cell walls obtained from mycelium grown at 200 and 400 mg Cu/L could rebind individual metals more than the control cell walls could. Rebinding of individual metals was in the order Zn>Fe>Ni>Cu>Co. Rebinding of copper by isolated cell walls depended on pH and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen G.C., Johnson B.R.: Improved colorimetric determination of cell wall chitin in wood decay fungi.Appl. Environ.Microbiol.46, 13–16 (1983).

    PubMed  CAS  Google Scholar 

  • Dey S., Rao P.R.N., Bhattacharyya B.C., Bandyopadhyay M.: Sorption of heavy metals by four basidiomycetous fungi.Bioprocess Eng.12, 273–277 (1995).

    Article  CAS  Google Scholar 

  • Fourest E., Canal C., Roux J.C.: Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei andPenicillium chrysogenum) pH control and cationic activation.FEMS Microbiol.Rev.14, 325–332 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Galli U., Schuepp H., Brunold C.: Heavy metal binding by mycorrhizal fungi.Physiol. Plant92 364–368 (1994).

    Article  CAS  Google Scholar 

  • Garcia-Toledo A., Babich H., Stotzky G.: Training ofRhizopus stolonifer andCunninghamella blakesleeana to copper. Cotolerance to cadmium, cobalt, and lead.Can.J.Microbiol.31, 485–492 (1985).

    CAS  Google Scholar 

  • Huang C., Huang C.P., Morehart A.L.: The removal of copper(II) from dilute aqueous solutions bySaccharomyces cerevisiae.,Water Res.24, 433–440 (1990).

    Article  CAS  Google Scholar 

  • Huang C., Huang C.P., Morehart A.L.: Proton competition in Cu(II) adsorption by fungal mycelia.Water Res.25, 1365–1375 (1991).

    Article  CAS  Google Scholar 

  • Hunsley D., Burnett J.H.: The ultrastructural architecture of the walls of some hyphal fungi.J. Gen. Microbiol.62, 203–218 (1970).

    CAS  Google Scholar 

  • Jirku V.: Immobilized cell wall as a biospecific sorbent.Biotechnol. Lett.8, 639–642 (1986).

    Article  CAS  Google Scholar 

  • Jones D., Muehlchen A.: Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi.J. Environ. Sci. Health A. Environ.Sci.Eng.29, 949–966 (1994).

    Google Scholar 

  • Lyr H., Casperson G.: Pathological cell wall synthesis inMucor mucedo (L.)Fres. under the effect of fungicides and other components (in German). Abh. Akad. Wiss. DDR Abt. Math. Naturwiss. Tech. 1982 in Publ. 1983, 69–78;Chem. Abstr.99, 117704t (1982).

  • Motohiro F., Sunao Y., Shozo T.: Distribution of copper in the cells of heavy metal tolerant fungus,Penicillium ochro-chloron, cultured in concentrated copper medium.Agric.Biol.Chem.47, 1367–1369 (1983).

    Google Scholar 

  • Muzzarelli R.A.A.:Chitin. Pergamon Press, Oxford 1974.

    Google Scholar 

  • Muzzarelli R.A.A., Rochetti R.: The use of chitosan columns for removal of mercury from waters.J.Chromatogr.96, 115–121 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Muzzarelli R.A.A.: Removal of uranium from solutions and brines by a derivative of chitosan and ascorbic acid.Carbohydr. Polym.5, 85–89 (1985).

    Article  CAS  Google Scholar 

  • Oliferchuk V.P., Sukhomlin M.N., Zhdanova N.N.: Adsorption of heavy metal ions by some micromycetes from the sewage of the enterprise of precise machine building.Mikrobiol. Zh56, 65–70 (1994).

    CAS  Google Scholar 

  • Patterson A., Kunst L., Bergman B., Roomans G.M.: Accumulation of aluminium byAnabaena cylindrica into polyphosphate granules and cell walls: an X-ray energy dispersive microanalysis study.J.Gen.Microbiol.131, 2545–2548 (1985).

    Google Scholar 

  • Reedy L.H., Prasad M.N.V.: Heavy metal binding proteins/peptides: occurrence, structure, synthesis and functions. A review.Environ.Exp.Bot.30, 251–264 (1990).

    Article  Google Scholar 

  • Rodrigues R.K., Kelman D.J., Barton L.J.: Iron metabolism by an ectomycorrhizal fungus,Cenococcum graniforme.J.Plant Nutr.7, 459–468 (1984).

    Article  Google Scholar 

  • Schmit J.C., Edson C.M., Brody S.: Changes in glucosamine and galactosamine levels during conidial germination inNeurospora crassa.J. Bacteriol.122, 1062–1070 (1975).

    PubMed  CAS  Google Scholar 

  • Sietsma J.H., Wessels J.G.H.: Solubility of (1→3)-β-d/(1→6)-β-d-glucan in fungal walls: importance of presumed linkage between glucan and chitin.J.Gen.Microbiol.125, 209–212 (1981).

    PubMed  CAS  Google Scholar 

  • Subramanyam C., Venkateswerlu G., Rao S.L.N.: Cell wall composition ofNeurospora crassa under conditions of copper toxicity.Appl.Environ.Microbiol.46, 585–590 (1983).

    PubMed  CAS  Google Scholar 

  • Tsezos M.: The selective extraction of metals from solution by microorganisms.Can.Metall.24, 141–144 (1985).

    CAS  Google Scholar 

  • Umbriet W.W., Burris R.H. Stauffer J.F., Cohen P.P., Johnse W.J., Leepage G.A., Patler V.R., Scheider W.C.:Manometric Techniques, a Manual Describing Methods Applicable to the Study of Tissue Metabolism, p. 239. Burgess Publ. Co. (1959).

  • Venkateswerlu G., Stotzky G.: Copper and cobalt alter the cell wall composition ofCunninghamella blakesleeana.Can.J.Microbiol.32, 654–662 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Venkateswerlu G., Stotzky G.: Binding of metals by cell walls ofCunninghamella blakesleeana grown in presence of copper or cobalt.Appl.Microbiol.Biotechnol.31, 619–625 (1989).

    Article  CAS  Google Scholar 

  • Volesky B.A., May-Phillips H.A.: Biosorption of heavy metals bySaccharomyces cerevisiae.Appl.Microbiol. Biotechnol.42, 797–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki T., Iba M., Imahara H.: Copper reduction by yeast cell wall materials and its role on copper uptake inDebaryomyces hansenii.J.Ferment.Technol.66, 257–265 (1988).

    Article  CAS  Google Scholar 

  • Wales D.S., Sagar B.F.: Recovery of metal ions by microfungal filters.J.Chem.Technol.Biotechnol.44, 345–356 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hefnawy, M.A., Razab, A.A. Alteration of cell-wall composition ofFusarium oxysporum by copper stress. Folia Microbiol 43, 453–458 (1998). https://doi.org/10.1007/BF02820790

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820790

Keywords

Navigation