Skip to main content
Log in

Theory and applications of the sine-gordon equation

  • Published:
La Rivista del Nuovo Cimento (1971-1977)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Frenkel and T. kontorova:On the theory of plastic deformation and twinning, Journ. Phys. USSR,1, 137 (1939).

    MathSciNet  MATH  Google Scholar 

  2. J. Rubinstein:Sine-Gordon equation, Journ. Math. Phys.,11, 258 (1970).

    Article  ADS  Google Scholar 

  3. A. C. Scott:A nonlinear Klein-Gordon equation, Am. Journ. Phys.,37, 52 (1969).

    Article  ADS  Google Scholar 

  4. A. M. Fedorchenko:The problem of separating growing waves into amplifying and fading types, Radio Eng. Elec. Phys.,7, 1369 (1962).

    Google Scholar 

  5. P. A. Sturrock:Kinematics of growing waves, Phys. Rev.,112, 1488 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. J. Briggs:Electron Stream Interaction with Plasma (Cambridge, Mass., 1964).

  7. A. C. Scott:Active and Nonlinear Wave-Propagation in Electronics (New York, 1970).

  8. P. F. Byrd andM. D. Friedman:Handbook of Elliptic Integrals (Berlin, 1954).

  9. A. C. Scott:Propagation of magnetic flux on a long Josephson tunnel junction, Nuovo Cimento,69 B, 241 (1970).

    Article  ADS  Google Scholar 

  10. A. C. Scott:Waveform stability on a nonlinear Klein-Gordon equation, Proc. IEEE,57, 1338 (1969).

    Article  Google Scholar 

  11. R. D. Parmentier:Stability analysis of neuristor waveforms, Proc. IEEE,55, 1498 (1967).

    Article  Google Scholar 

  12. R. J. Buratti andA. G. Lindgren:Neuristor waveform and stability by the linear approximation, Proc. IEEE,56, 1392 (1968).

    Article  Google Scholar 

  13. H. Goldstein:Classical Mechanics, Chap. 11 (Reading, Mass., 1950).

  14. G. B. Whitham:Variational methods and applications to water waves, Proc. Roy. Soc., A299, 6 (1967).

    Article  ADS  Google Scholar 

  15. G. L. Lamb jr.:Analytical descriptions of ultra-short-optical-pulse propagation in a resonant medium, Rev. Mod. Phys. (to be published).

  16. J. K. Perring andT. H. R. Skyrme:A model unified field equation, Nucl. Phys.,31, 550 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  17. In ref. [15] it is noted that pseudospherical surfaces corresponding to solutions of (2.32) are catalogued inR. Steuerwald:Abhand. Bayer. Akad. Wiss. (Munchen),40 (1936).

  18. L. P. Eisenhart:Differential Geometry of Curves and Surfaces (New York, 1960), p. 284.

  19. A. R. Forsyth:Theory of Differential Equations, Vol.6 (New York, 1959), p. 432.

    Google Scholar 

  20. A. Kochendorfer, A. Seeger andH. Donth: Theorie der Versetzungen in eindimensionalen Atomreihen,Zeits. Phys.,127, 533 (1950);130, 321 (1951);134, 173 (1953).

    Article  ADS  Google Scholar 

  21. H. Goldstein:Classical Mechanics (New York, 1950).

  22. R. M. Miura, C. S. Gardner andM. D. Kruskel:Korteweg-deVries equation. - II:Existence of conservation laws and constants of the motion, Journ. Math. Phys.,9, 1204 (1968).

    Article  ADS  MATH  Google Scholar 

  23. P. A. Sturrock:Action-transfer and frequency-shift relations in the nonlinear theory of waves and oscillations, Ann. of Phys.,9, 422 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Penfield jr.:Frequency-Power Formulas (New York, 1960).

  25. R. Finkelstein, R. LeLevier andM. Ruderman:Nonlinear spinor fields, Phys. Rev.,83, 326 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. N. V. Mitskevich:The scalar field of a stationary nucleon in a nonlinear theory, Sov. Phys. JETP,2, 197 (1956).

    Google Scholar 

  27. T. H. R. Skyrme:Particle states of a quantized field, Proc. Roy. Soc., A262, 237 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Finkelstein andC. W. Misner:Some new conservation laws, Ann. of Phys.,6, 230 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. H. B. Rosenstock:Quantization of a nonlinear field theory, Phys. Rev.,93, 331 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J. R. Waldram, A. B. Pippard andJ. Clark:Theory of the current-voltage characteristics of SNS junctions and other superconducting weak links, Phil. Trans. Roy. Soc. Lond.,268, 265 (1970).

    Article  ADS  Google Scholar 

  31. B. D. Josephson:Supercurrents through barriers, Adv. Phys.,14, 419 (1965).

    Article  ADS  Google Scholar 

  32. R. P. Feynman:Lectures on Physics, Vol.3, Sect.219 (New York, 1960).

  33. J. C. Swihart:Field solutions for a thin-film superconducting strip transmission line, Journ. Appl. Phys.,32, 461 (1961).

    Article  ADS  Google Scholar 

  34. R. E. Eck, D. J. Scalapino andB. N. Taylor:Self-detection of the a.c. Josephson current, Phys. Rev. Lett.,13, 15 (1964).

    Article  ADS  Google Scholar 

  35. R. A. Ferrell andR. E. Prange:Self-field limiting of Josephson tunneling of superconducting electron pairs, Phys. Rev. Lett.,10, 230 (1963).

    Article  Google Scholar 

  36. C. S. Owen andD. J. Scalapino:Vortex structure and critical current in Josephson junctions, Phys. Rev.,164, 538 (1967).

    Article  ADS  Google Scholar 

  37. T. Yamashita, M. Kunita andY. Onodera:Josephson current limited by self-field, Jap. Journ. Appl. Phys.,7, 288 (1968).

    Article  ADS  Google Scholar 

  38. T. Yamashita, M. Kunita andY. Onodera:Magnetic-field dependence of Josephson current modified by self-field, Journ. Appl. Phys.,39, 5396 (1968).

    Article  ADS  Google Scholar 

  39. J. P. Pritchard jr. andW. Schroen:Superconducting tunneling device characteristics for array applications, IEEE Trans. Magnetics,3, 320 (1968).

    Article  ADS  Google Scholar 

  40. A. M. Goldman andP. J. Kreisman:Meissner effect and vortex penetration in Josephson junctions, Phys. Rev.,164, 544 (1967).

    Article  ADS  Google Scholar 

  41. J. Matisoo:Critical currents and current distributions in Josephson junctions, Journ. Appl. Phys.,40, 1813 (1969).

    Article  ADS  Google Scholar 

  42. W. Schroen andJ. P. Pritchard jr.:Maximum tunneling supercurrents through Josephson barriers, Journ. Appl. Phys.,40, 2118 (1969).

    Article  ADS  Google Scholar 

  43. K. Schwidtal andR. D. Finnegan:Barrier-thickness dependence of the d.c. quantum interference effect in thin-film lead Josephson junctions, Journ. Appl. Phys.,40, 2123 (1969).

    Article  ADS  Google Scholar 

  44. C. K. Mahutte, J. D. Leslie andH. J. T. Smith:« Self-field » limiting of Josephson tunnel current, Can. Journ. Phys.,47, 627 (1969).

    Article  ADS  Google Scholar 

  45. W. J. Johnson andA. Barone:Effect of junction geometry on maximum zerovoltage Josephson current, Journ. Appl. Phys.,41, 2958 (1970).

    Article  ADS  Google Scholar 

  46. I. O. Kulik:Propagation of waves in a Josephson tunnel junction in the presence of vortices and the elctrodynamics of weak superconductivity, Sov. Phys. JETP,24, 1307 (1967).

    ADS  Google Scholar 

  47. P. Lebwohl andM. J. Stephen:Properties of vortex lines in superconducting barriers, Phys. Rev.,163, 376 (1967).

    Article  ADS  Google Scholar 

  48. A. C. Scott:Steady propagation on long Josephson junctions, Bull. Am. Phys. Soc.,12, 308 (1967).

    Google Scholar 

  49. R. D. Parmentier:Recoverable neuristor propagation on superconductive tunnel junction strip lines, Solid State Elec.,12, 287 (1969).

    Article  ADS  Google Scholar 

  50. A. C. Scott andW. J. Johnson:Internal flux motion in large Josephson junctions, Appl. Phys. Lett.,14, 316 (1969). See alsoA. Barone:Flux-flow effect in Josephson tunnel junctions, Journ. Appl. Phys.,42, 2747 (1971).

    Article  ADS  Google Scholar 

  51. W. J. Johnson:Nonlinear wave propagation on superconducting tunnel junctions, Ph. D. Thesis, University of Wisconsin (1968).

  52. W. Döring: Über die Trägheit der Wände zwischen wiesschen Bezirken,Zeits. Naturf.,3 a, 373 (1948).

    ADS  Google Scholar 

  53. R. Becker: La dynamique de la paroi de Bloch et la perméabilité en haute fréquence,Journ. Phys. Radium,12, 332 (1951).

    Article  MATH  Google Scholar 

  54. C. P. Bean andR. W. De Blois:Ferromagnetic domain wall as a pseudorelativistic entity, Bull. Am. Phys. Soc.,4, 53 (1959).

    Google Scholar 

  55. U. Enz: Die Dynamik der blochschen Wand,Helv. Phys. Acta,37, 245 (1964).

    Google Scholar 

  56. E. Feldtkeller:Magnetic domain wall dynamics, Phys. Stat. Sol.,27, 161 (1968).

    Article  ADS  Google Scholar 

  57. J. L. Fergason andG. H. Brown:Liquid crystals and living systems, Journ. Am. Oil Chemists Soc.,45, 120 (1968).

    Article  Google Scholar 

  58. F. T. Arecchi andR. Bonifacio:Theory of optical maser amplifiers, IEEE Journ. Quan. Elec.,1, 169 (1965). See alsoF. T. Arecchi, G. L. Masserini andP. Schwendimann:Electromagnetic propagation in a resonant medium, Riv. Nuovo Cimento,1, 181 (1969).

    Article  ADS  Google Scholar 

  59. S. L. McCall andE. L. Hahn:Self-induced transparency by pulsed coherent light, Phys. Rev. Lett.,18, 908 (1967).

    Article  ADS  Google Scholar 

  60. An excellent review of methods employed in the generation of ultra-short optical pulses in given inA. J. De Maria, D. A. Stetser andW. H. Glenn jr.:Ultra-short light pulses, Science,3782, 1557 (1967).

    Google Scholar 

  61. S. L. McCall andE. L. Hahn:Self-induced transparency, Phys. Rev.,183, 457 (1969).

    Article  ADS  Google Scholar 

  62. F. A. Hopf andM. O. Scully:Theory of inhomogeneously broadened laser, Phys. Rev.,179, 399 (1969).

    Article  ADS  Google Scholar 

  63. G. L. Lamb jr.:Propagation of Ultra-short Optical Pulses, In Honor of Philip M. Morse, edited byH. Feshbach andK. U. Ingard (Cambridge, Mass., 1969), p. 88.

  64. C. K. N. Patel andR. E. Slusher:Self-induced transparency in gases, Phys. Rev. Lett.,19, 1019 (1967).

    Article  ADS  Google Scholar 

  65. G. L. Lamb jr.:Diverse analyses of coherent pulse propagation, inProceedings of the Quantum Electronics Summer School, Prescott, Ariz., 1970, to be published.

  66. C. L. Tang andB. D. Silverman:Physics of Quantum Electronics, edited byP. L. Kelley, B. Lax andP. E. Tannenwald (New York, 1966), p. 280.

  67. C. J. Magee:Propagation of stable ultra-short optical pulses, Nuovo Cimento,2 B, 208 (1971).

    Article  ADS  Google Scholar 

  68. F. T. Arecchi, V. De Giorgio andC. G. Someda:Self-consistent light propagation in a resonant medium, Phys. Rev. Lett.,27 A, 588 (1968).

    Article  ADS  Google Scholar 

  69. J. H. Eberly:Optical pulse and pulse-train propagation in a resonant medium, Phys. Rev. Lett.,22, 760 (1969);M. D. Crisp:Distortionless propagation of light through an optical medium, Phys. Rev. Lett.,22, 820 (1969).

    Article  ADS  Google Scholar 

  70. G. L. Lamb jr.:Pulse propagation in a lossless amplifier, Phys. Lett.,29 A, 507 (1969).

    Article  ADS  Google Scholar 

  71. R. Bonifacio andL. M. Narducci:Short-pulse propagation in a laser amplifier with saturable losses, Lett. Nuovo Cimento,1, 271 (1969). See also Fig. 26 ofA. Icsevgi andW. E. Lamb jr.:Propagation of light pulses in a laser amplifier, Phys. Rev.,185, 517 (1969).

    Article  Google Scholar 

  72. A. Lees:The electron in classical general relativity theory, Phil. Mag.,28, 385 (1939).

    Article  MathSciNet  Google Scholar 

  73. P. A. M. Dirac:An extensible model of the electron, Proc. Roy. Soc., A268, 57 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  74. G. Mie:Grundlagen einer Theorie der Materie, I,Ann. der Phys.,37, 511 (1912); II,39, 1 (1912); III,40, 1 (1913).

    Article  ADS  MATH  Google Scholar 

  75. M. Born:On the quantum theory of the electromagnetic field, Proc. Roy. Soc., A143, 418 (1934).

    ADS  Google Scholar 

  76. M. Born andL. Infeld:Foundation of a new field theory, Proc. Roy. Soc., A144, 425 (1934).

    Article  ADS  Google Scholar 

  77. M. Born andL. Infeld:On the quantization of the new field equations, Proc. Roy. Soc., I, A147, 522 (1934); II, A150, 141 (1935).

    Article  ADS  Google Scholar 

  78. E. Feenberg:On the Born-Infeld field theory of the electron, Phys. Rev.,47, 148 (1935).

    Article  ADS  Google Scholar 

  79. N. Rosen:A field theory of elementary particles, Phys. Rev.,55, 94 (1939).

    Article  ADS  Google Scholar 

  80. N. Rosen andH. B. Rosenstock:The force between particles in a nonlinear field theory, Phys. Rev.,85, 257 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. R. Finkelstein, C. Fronsdal andP. Kaus:Nonlinear spinor field, Phys. Rev.,103, 1571 (1956).

    Article  ADS  MATH  Google Scholar 

  82. W. Heisenberg: Zur Quantentheorie nichtrenormierbar Wellengleichungen,Zeits. Naturf.,9 a, 292 (1954).

    MathSciNet  ADS  Google Scholar 

  83. L. de Broglie: Illustration par un example de la forme des fonctions d’ondes singulières de la théorie de la double solution,Compt. Rend.,243, 39 (1956).

    Google Scholar 

  84. L. De Broglie:Nonlinear-Wave Mechanics (Houston, Tex., 1960).

  85. L. De Broglie:Introduction to the Vigier theory of elementary particles (Houston, Tex., 1963).

  86. W. Heisenberg:Introduction to the Unified Field Theory of Elementary Particles (New York, 1966).

  87. L. I. Schiff:Nonlinear meson theory of nuclear force, Phys. Rev.,84, 1 (1951).

    Article  ADS  Google Scholar 

  88. W. Thirring: Nichtlineare Terme in Meson Gleichungen,Zeits. Naturf.,7 a, 63 (1952).

    MathSciNet  ADS  Google Scholar 

  89. H. Schiff:A classical theory of bosons, Proc. Roy. Soc., A269, 277 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  90. T. H. R. Skyrme:A nonlinear theory of strong interactions, Proc. Roy. Soc., A247, 260 (1958).

    Article  ADS  Google Scholar 

  91. U. Enz:Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variational principle, Phys. Rev.,131, 1392 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. G. Rosen:Particlelike solutions to nonlinear complex scalar field theories with positive definite energy densities, Journ. Math. Phys.,9, 996 (1968).

    Article  ADS  Google Scholar 

  93. G. Rosen:Charged particlelike solutions to nonlinear complex scalar field theories, Journ. Math. Phys.,9, 999 (1968).

    Article  ADS  Google Scholar 

  94. D. Finkelstein andC. W. Misner:Some new conservation laws, Ann. of Phys.,6, 230 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. R. H. Hobart:On the instability of a class of unitary field models, Proc. Phys. Soc.,82, 201 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  96. G. H. Derrick:Comments on nonlinear wave equations as models for elementary particles, Journ. Math. Phys.,5, 1252 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  97. C. S. Morawetz:Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc., A306, 291 (1968).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Consiglio Nazionale delle Ricerche and the National Science Foundation under the U.S.-Italy Program for Co-operative Research in Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, A., Esposito, F., Magee, C.J. et al. Theory and applications of the sine-gordon equation. La Rivista del Nuovo Cimento 1, 227–267 (1971). https://doi.org/10.1007/BF02820622

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820622

Navigation