La Rivista del Nuovo Cimento (1971-1977)

, Volume 1, Issue 2, pp 227–267 | Cite as

Theory and applications of the sine-gordon equation

  • A. Barone
  • F. Esposito
  • C. J. Magee
  • A. C. Scott


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Frenkel and T. kontorova:On the theory of plastic deformation and twinning, Journ. Phys. USSR,1, 137 (1939).MathSciNetzbMATHGoogle Scholar
  2. [2]
    J. Rubinstein:Sine-Gordon equation, Journ. Math. Phys.,11, 258 (1970).CrossRefADSGoogle Scholar
  3. [3]
    A. C. Scott:A nonlinear Klein-Gordon equation, Am. Journ. Phys.,37, 52 (1969).CrossRefADSGoogle Scholar
  4. [4]
    A. M. Fedorchenko:The problem of separating growing waves into amplifying and fading types, Radio Eng. Elec. Phys.,7, 1369 (1962).Google Scholar
  5. [5]
    P. A. Sturrock:Kinematics of growing waves, Phys. Rev.,112, 1488 (1958).MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. [6]
    R. J. Briggs:Electron Stream Interaction with Plasma (Cambridge, Mass., 1964).Google Scholar
  7. [7]
    A. C. Scott:Active and Nonlinear Wave-Propagation in Electronics (New York, 1970).Google Scholar
  8. [8]
    P. F. Byrd andM. D. Friedman:Handbook of Elliptic Integrals (Berlin, 1954).Google Scholar
  9. [9]
    A. C. Scott:Propagation of magnetic flux on a long Josephson tunnel junction, Nuovo Cimento,69 B, 241 (1970).CrossRefADSGoogle Scholar
  10. [10]
    A. C. Scott:Waveform stability on a nonlinear Klein-Gordon equation, Proc. IEEE,57, 1338 (1969).CrossRefGoogle Scholar
  11. [11]
    R. D. Parmentier:Stability analysis of neuristor waveforms, Proc. IEEE,55, 1498 (1967).CrossRefGoogle Scholar
  12. [12]
    R. J. Buratti andA. G. Lindgren:Neuristor waveform and stability by the linear approximation, Proc. IEEE,56, 1392 (1968).CrossRefGoogle Scholar
  13. [13]
    H. Goldstein:Classical Mechanics, Chap. 11 (Reading, Mass., 1950).Google Scholar
  14. [14]
    G. B. Whitham:Variational methods and applications to water waves, Proc. Roy. Soc., A299, 6 (1967).CrossRefADSGoogle Scholar
  15. [15]
    G. L. Lamb jr.:Analytical descriptions of ultra-short-optical-pulse propagation in a resonant medium, Rev. Mod. Phys. (to be published).Google Scholar
  16. [16]
    J. K. Perring andT. H. R. Skyrme:A model unified field equation, Nucl. Phys.,31, 550 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    In ref. [15] it is noted that pseudospherical surfaces corresponding to solutions of (2.32) are catalogued inR. Steuerwald:Abhand. Bayer. Akad. Wiss. (Munchen),40 (1936).Google Scholar
  18. [18]
    L. P. Eisenhart:Differential Geometry of Curves and Surfaces (New York, 1960), p. 284.Google Scholar
  19. [19]
    A. R. Forsyth:Theory of Differential Equations, Vol.6 (New York, 1959), p. 432.Google Scholar
  20. [20]
    A. Kochendorfer, A. Seeger andH. Donth: Theorie der Versetzungen in eindimensionalen Atomreihen,Zeits. Phys.,127, 533 (1950);130, 321 (1951);134, 173 (1953).CrossRefADSGoogle Scholar
  21. [21]
    H. Goldstein:Classical Mechanics (New York, 1950).Google Scholar
  22. [22]
    R. M. Miura, C. S. Gardner andM. D. Kruskel:Korteweg-deVries equation. - II:Existence of conservation laws and constants of the motion, Journ. Math. Phys.,9, 1204 (1968).CrossRefADSzbMATHGoogle Scholar
  23. [23]
    P. A. Sturrock:Action-transfer and frequency-shift relations in the nonlinear theory of waves and oscillations, Ann. of Phys.,9, 422 (1960).MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    P. Penfield jr.:Frequency-Power Formulas (New York, 1960).Google Scholar
  25. [25]
    R. Finkelstein, R. LeLevier andM. Ruderman:Nonlinear spinor fields, Phys. Rev.,83, 326 (1951).MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. [26]
    N. V. Mitskevich:The scalar field of a stationary nucleon in a nonlinear theory, Sov. Phys. JETP,2, 197 (1956).Google Scholar
  27. [27]
    T. H. R. Skyrme:Particle states of a quantized field, Proc. Roy. Soc., A262, 237 (1961).MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    D. Finkelstein andC. W. Misner:Some new conservation laws, Ann. of Phys.,6, 230 (1959).MathSciNetCrossRefADSzbMATHGoogle Scholar
  29. [29]
    H. B. Rosenstock:Quantization of a nonlinear field theory, Phys. Rev.,93, 331 (1954).MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. [30]
    J. R. Waldram, A. B. Pippard andJ. Clark:Theory of the current-voltage characteristics of SNS junctions and other superconducting weak links, Phil. Trans. Roy. Soc. Lond.,268, 265 (1970).CrossRefADSGoogle Scholar
  31. [31]
    B. D. Josephson:Supercurrents through barriers, Adv. Phys.,14, 419 (1965).CrossRefADSGoogle Scholar
  32. [32]
    R. P. Feynman:Lectures on Physics, Vol.3, Sect.219 (New York, 1960).Google Scholar
  33. [33]
    J. C. Swihart:Field solutions for a thin-film superconducting strip transmission line, Journ. Appl. Phys.,32, 461 (1961).CrossRefADSGoogle Scholar
  34. [34]
    R. E. Eck, D. J. Scalapino andB. N. Taylor:Self-detection of the a.c. Josephson current, Phys. Rev. Lett.,13, 15 (1964).CrossRefADSGoogle Scholar
  35. [35]
    R. A. Ferrell andR. E. Prange:Self-field limiting of Josephson tunneling of superconducting electron pairs, Phys. Rev. Lett.,10, 230 (1963).CrossRefGoogle Scholar
  36. [36]
    C. S. Owen andD. J. Scalapino:Vortex structure and critical current in Josephson junctions, Phys. Rev.,164, 538 (1967).CrossRefADSGoogle Scholar
  37. [37]
    T. Yamashita, M. Kunita andY. Onodera:Josephson current limited by self-field, Jap. Journ. Appl. Phys.,7, 288 (1968).CrossRefADSGoogle Scholar
  38. [38]
    T. Yamashita, M. Kunita andY. Onodera:Magnetic-field dependence of Josephson current modified by self-field, Journ. Appl. Phys.,39, 5396 (1968).CrossRefADSGoogle Scholar
  39. [39]
    J. P. Pritchard jr. andW. Schroen:Superconducting tunneling device characteristics for array applications, IEEE Trans. Magnetics,3, 320 (1968).CrossRefADSGoogle Scholar
  40. [40]
    A. M. Goldman andP. J. Kreisman:Meissner effect and vortex penetration in Josephson junctions, Phys. Rev.,164, 544 (1967).CrossRefADSGoogle Scholar
  41. [41]
    J. Matisoo:Critical currents and current distributions in Josephson junctions, Journ. Appl. Phys.,40, 1813 (1969).CrossRefADSGoogle Scholar
  42. [42]
    W. Schroen andJ. P. Pritchard jr.:Maximum tunneling supercurrents through Josephson barriers, Journ. Appl. Phys.,40, 2118 (1969).CrossRefADSGoogle Scholar
  43. [43]
    K. Schwidtal andR. D. Finnegan:Barrier-thickness dependence of the d.c. quantum interference effect in thin-film lead Josephson junctions, Journ. Appl. Phys.,40, 2123 (1969).CrossRefADSGoogle Scholar
  44. [44]
    C. K. Mahutte, J. D. Leslie andH. J. T. Smith:« Self-field » limiting of Josephson tunnel current, Can. Journ. Phys.,47, 627 (1969).CrossRefADSGoogle Scholar
  45. [45]
    W. J. Johnson andA. Barone:Effect of junction geometry on maximum zerovoltage Josephson current, Journ. Appl. Phys.,41, 2958 (1970).CrossRefADSGoogle Scholar
  46. [46]
    I. O. Kulik:Propagation of waves in a Josephson tunnel junction in the presence of vortices and the elctrodynamics of weak superconductivity, Sov. Phys. JETP,24, 1307 (1967).ADSGoogle Scholar
  47. [47]
    P. Lebwohl andM. J. Stephen:Properties of vortex lines in superconducting barriers, Phys. Rev.,163, 376 (1967).CrossRefADSGoogle Scholar
  48. [48]
    A. C. Scott:Steady propagation on long Josephson junctions, Bull. Am. Phys. Soc.,12, 308 (1967).Google Scholar
  49. [49]
    R. D. Parmentier:Recoverable neuristor propagation on superconductive tunnel junction strip lines, Solid State Elec.,12, 287 (1969).CrossRefADSGoogle Scholar
  50. [50]
    A. C. Scott andW. J. Johnson:Internal flux motion in large Josephson junctions, Appl. Phys. Lett.,14, 316 (1969). See alsoA. Barone:Flux-flow effect in Josephson tunnel junctions, Journ. Appl. Phys.,42, 2747 (1971).CrossRefADSGoogle Scholar
  51. [51]
    W. J. Johnson:Nonlinear wave propagation on superconducting tunnel junctions, Ph. D. Thesis, University of Wisconsin (1968).Google Scholar
  52. [52]
    W. Döring: Über die Trägheit der Wände zwischen wiesschen Bezirken,Zeits. Naturf.,3 a, 373 (1948).ADSGoogle Scholar
  53. [53]
    R. Becker: La dynamique de la paroi de Bloch et la perméabilité en haute fréquence,Journ. Phys. Radium,12, 332 (1951).CrossRefzbMATHGoogle Scholar
  54. [54]
    C. P. Bean andR. W. De Blois:Ferromagnetic domain wall as a pseudorelativistic entity, Bull. Am. Phys. Soc.,4, 53 (1959).Google Scholar
  55. [55]
    U. Enz: Die Dynamik der blochschen Wand,Helv. Phys. Acta,37, 245 (1964).Google Scholar
  56. [56]
    E. Feldtkeller:Magnetic domain wall dynamics, Phys. Stat. Sol.,27, 161 (1968).CrossRefADSGoogle Scholar
  57. [57]
    J. L. Fergason andG. H. Brown:Liquid crystals and living systems, Journ. Am. Oil Chemists Soc.,45, 120 (1968).CrossRefGoogle Scholar
  58. [58]
    F. T. Arecchi andR. Bonifacio:Theory of optical maser amplifiers, IEEE Journ. Quan. Elec.,1, 169 (1965). See alsoF. T. Arecchi, G. L. Masserini andP. Schwendimann:Electromagnetic propagation in a resonant medium, Riv. Nuovo Cimento,1, 181 (1969).CrossRefADSGoogle Scholar
  59. [59]
    S. L. McCall andE. L. Hahn:Self-induced transparency by pulsed coherent light, Phys. Rev. Lett.,18, 908 (1967).CrossRefADSGoogle Scholar
  60. [60]
    An excellent review of methods employed in the generation of ultra-short optical pulses in given inA. J. De Maria, D. A. Stetser andW. H. Glenn jr.:Ultra-short light pulses, Science,3782, 1557 (1967).Google Scholar
  61. [61]
    S. L. McCall andE. L. Hahn:Self-induced transparency, Phys. Rev.,183, 457 (1969).CrossRefADSGoogle Scholar
  62. [62]
    F. A. Hopf andM. O. Scully:Theory of inhomogeneously broadened laser, Phys. Rev.,179, 399 (1969).CrossRefADSGoogle Scholar
  63. [63]
    G. L. Lamb jr.:Propagation of Ultra-short Optical Pulses, In Honor of Philip M. Morse, edited byH. Feshbach andK. U. Ingard (Cambridge, Mass., 1969), p. 88.Google Scholar
  64. [64]
    C. K. N. Patel andR. E. Slusher:Self-induced transparency in gases, Phys. Rev. Lett.,19, 1019 (1967).CrossRefADSGoogle Scholar
  65. [65]
    G. L. Lamb jr.:Diverse analyses of coherent pulse propagation, inProceedings of the Quantum Electronics Summer School, Prescott, Ariz., 1970, to be published.Google Scholar
  66. [66]
    C. L. Tang andB. D. Silverman:Physics of Quantum Electronics, edited byP. L. Kelley, B. Lax andP. E. Tannenwald (New York, 1966), p. 280.Google Scholar
  67. [67]
    C. J. Magee:Propagation of stable ultra-short optical pulses, Nuovo Cimento,2 B, 208 (1971).CrossRefADSGoogle Scholar
  68. [68]
    F. T. Arecchi, V. De Giorgio andC. G. Someda:Self-consistent light propagation in a resonant medium, Phys. Rev. Lett.,27 A, 588 (1968).CrossRefADSGoogle Scholar
  69. [69]
    J. H. Eberly:Optical pulse and pulse-train propagation in a resonant medium, Phys. Rev. Lett.,22, 760 (1969);M. D. Crisp:Distortionless propagation of light through an optical medium, Phys. Rev. Lett.,22, 820 (1969).CrossRefADSGoogle Scholar
  70. [70]
    G. L. Lamb jr.:Pulse propagation in a lossless amplifier, Phys. Lett.,29 A, 507 (1969).CrossRefADSGoogle Scholar
  71. [71]
    R. Bonifacio andL. M. Narducci:Short-pulse propagation in a laser amplifier with saturable losses, Lett. Nuovo Cimento,1, 271 (1969). See also Fig. 26 ofA. Icsevgi andW. E. Lamb jr.:Propagation of light pulses in a laser amplifier, Phys. Rev.,185, 517 (1969).CrossRefGoogle Scholar
  72. [72]
    A. Lees:The electron in classical general relativity theory, Phil. Mag.,28, 385 (1939).MathSciNetCrossRefGoogle Scholar
  73. [73]
    P. A. M. Dirac:An extensible model of the electron, Proc. Roy. Soc., A268, 57 (1962).MathSciNetCrossRefADSGoogle Scholar
  74. [74]
    G. Mie:Grundlagen einer Theorie der Materie, I,Ann. der Phys.,37, 511 (1912); II,39, 1 (1912); III,40, 1 (1913).CrossRefADSzbMATHGoogle Scholar
  75. [75]
    M. Born:On the quantum theory of the electromagnetic field, Proc. Roy. Soc., A143, 418 (1934).ADSGoogle Scholar
  76. [76]
    M. Born andL. Infeld:Foundation of a new field theory, Proc. Roy. Soc., A144, 425 (1934).CrossRefADSGoogle Scholar
  77. [77]
    M. Born andL. Infeld:On the quantization of the new field equations, Proc. Roy. Soc., I, A147, 522 (1934); II, A150, 141 (1935).CrossRefADSGoogle Scholar
  78. [78]
    E. Feenberg:On the Born-Infeld field theory of the electron, Phys. Rev.,47, 148 (1935).CrossRefADSGoogle Scholar
  79. [79]
    N. Rosen:A field theory of elementary particles, Phys. Rev.,55, 94 (1939).CrossRefADSGoogle Scholar
  80. [80]
    N. Rosen andH. B. Rosenstock:The force between particles in a nonlinear field theory, Phys. Rev.,85, 257 (1952).MathSciNetCrossRefADSzbMATHGoogle Scholar
  81. [81]
    R. Finkelstein, C. Fronsdal andP. Kaus:Nonlinear spinor field, Phys. Rev.,103, 1571 (1956).CrossRefADSzbMATHGoogle Scholar
  82. [82]
    W. Heisenberg: Zur Quantentheorie nichtrenormierbar Wellengleichungen,Zeits. Naturf.,9 a, 292 (1954).MathSciNetADSGoogle Scholar
  83. [83]
    L. de Broglie: Illustration par un example de la forme des fonctions d’ondes singulières de la théorie de la double solution,Compt. Rend.,243, 39 (1956).Google Scholar
  84. [84]
    L. De Broglie:Nonlinear-Wave Mechanics (Houston, Tex., 1960).Google Scholar
  85. [85]
    L. De Broglie:Introduction to the Vigier theory of elementary particles (Houston, Tex., 1963).Google Scholar
  86. [86]
    W. Heisenberg:Introduction to the Unified Field Theory of Elementary Particles (New York, 1966).Google Scholar
  87. [87]
    L. I. Schiff:Nonlinear meson theory of nuclear force, Phys. Rev.,84, 1 (1951).CrossRefADSGoogle Scholar
  88. [88]
    W. Thirring: Nichtlineare Terme in Meson Gleichungen,Zeits. Naturf.,7 a, 63 (1952).MathSciNetADSGoogle Scholar
  89. [89]
    H. Schiff:A classical theory of bosons, Proc. Roy. Soc., A269, 277 (1962).MathSciNetCrossRefADSGoogle Scholar
  90. [90]
    T. H. R. Skyrme:A nonlinear theory of strong interactions, Proc. Roy. Soc., A247, 260 (1958).CrossRefADSGoogle Scholar
  91. [91]
    U. Enz:Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variational principle, Phys. Rev.,131, 1392 (1963).MathSciNetCrossRefADSzbMATHGoogle Scholar
  92. [92]
    G. Rosen:Particlelike solutions to nonlinear complex scalar field theories with positive definite energy densities, Journ. Math. Phys.,9, 996 (1968).CrossRefADSGoogle Scholar
  93. [93]
    G. Rosen:Charged particlelike solutions to nonlinear complex scalar field theories, Journ. Math. Phys.,9, 999 (1968).CrossRefADSGoogle Scholar
  94. [94]
    D. Finkelstein andC. W. Misner:Some new conservation laws, Ann. of Phys.,6, 230 (1959).MathSciNetCrossRefADSzbMATHGoogle Scholar
  95. [95]
    R. H. Hobart:On the instability of a class of unitary field models, Proc. Phys. Soc.,82, 201 (1963).MathSciNetCrossRefADSGoogle Scholar
  96. [96]
    G. H. Derrick:Comments on nonlinear wave equations as models for elementary particles, Journ. Math. Phys.,5, 1252 (1964).MathSciNetCrossRefADSGoogle Scholar
  97. [97]
    C. S. Morawetz:Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc., A306, 291 (1968).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1971

Authors and Affiliations

  • A. Barone
    • 1
  • F. Esposito
    • 1
  • C. J. Magee
    • 1
  • A. C. Scott
    • 2
  1. 1.Laboratorio di Cibernetica del CNRArco Felice (Napoli)
  2. 2.University of WisconsinMadison

Personalised recommendations