Skip to main content
Log in

No Gell-Mann and Low eigenvalue in quantum electrodynamics

  • Published:
Il Nuovo Cimento A (1965-1970)

An Erratum to this article was published on 01 April 1991

Summary

It is argued that the Gell-Mann and Low eigenvalue equation,ψ(x)=0 in quantum electrodynamics doesnot possess a nontrivial solution,x 0≠0 and hence that quantum electrodynamics cannot be afinite field theory. This result reinforces the Baker-Johnson conjecture of 1979.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Johnson andM. Baker:Phys. Rev. D,8, 1110 (1973) and references therein.

    Article  ADS  Google Scholar 

  2. S. L. Adler:Phys. Rev. D,5, 3021 (1972);J. Bernstein:Nucl. Phys. B,95, 461 (1975).

    Article  ADS  Google Scholar 

  3. M. Gell-Mann andF. E. Low:Phys. Rev.,95, 1300 (1954);N. N. Bogoliubov andD. Shirkov:Introduction to the Theory of Quantized Fields (Interscience, New York, N.Y., 1959);K. Wilson:Phys. Rev. D,3, 1818 (1971);S. Weinberg:Phys. Rev. D 8, 3497 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. S. Bell andR. Jackiw:Nuovo Cimento A,60, 47 (1969);S. L. Adler:Phys. Rev.,177, 2426 (1969);R. Jackiw andK. Johnson:Phys. Rev.,182, 1459 (1969);S. L. Adler andW. Bardeen:Phys. Rev.,182, 1517 (1969);C. R. Hagen:Phys. Rev.,177, 2622 (1969);B. Zumino:Proceedings of the Topical Conference on Weak Interactions (CERN, Geneva, 1969), p. 361.

    Article  ADS  Google Scholar 

  5. Y. Nambu:Phys. Rev. Lett.,4, 380 (1960);J. Goldstone, A. Salam andS. Weinberg:Phys. Rev.,127, 965 (1962).

    Article  ADS  Google Scholar 

  6. Y. Nambu:Phys. Lett.,9, 214 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Baker andK. Johnson:Phys. Rev. D,3, 2516 (1971).

    Article  ADS  Google Scholar 

  8. The Baker-Johnson argument has been examined in great detail inP. Langacker andH. Pagels:Phys. Rev. D,9, 3413 (1974) and references therein. The latter analysis employs the results ofR. J. Crewther, S. Shei andT. Yan:Phys. Rev. D,8, 3396 (1973). See, however,R. Crewther andN. Nielsen:Nucl. Phys. B,87, 52 (1975). It should be pointed here that Adler and Bardeen (ref.[4]) have established that\(m_0 (\psi \gamma 5\psi )0\) is finite order-by-order in perturbation theory. If this result remains valid in the “summed” up theory (as would be expected in the renormalization group philosophy), then γ5 symmetry would be broken explicitly.

    Article  ADS  Google Scholar 

  9. Equation (2.1) can be derived by the Takahaski method (Nuovo Cimento,6, 370 (1957)) except for the anomalous term which can be obtained by a careful treatment. See,e.g.,R. Jackiw:Lectures on Current Algebra and Its Applications (Princeton University Press, Princeton, N.J., 1972).

  10. SeeP. Langacker andH. Pagels:Phys. Rev. D,9, 3413 (1974).

    Article  ADS  Google Scholar 

  11. G. Preparata andW. Weisberger:Phys. Rev.,175, 1965 (1968);J. Bjorken andS. Drell:Relativistic Quantum Fields (McGraw-Hill, New York, N.Y., 1964).

    Article  ADS  Google Scholar 

  12. M. Baker andK. Johnson:Phys. Rev. D,3, 2541 (1971).

    Article  ADS  Google Scholar 

  13. Whenm=0, eq. (2.9) is, of course, trivially stisfied in ordinary QED, order by order, since then{S \( ^{ - 1} ,\gamma 5\} \) vanishes in each order of perturbation theory. We are, however, interested in Gell-Mann-Low limit of the exact theory: on grounds of Lorentz invariance and parity conservation, we can writeS \( ^{ - 1} (p) = A(p^2 ,a)\gamma \cdot p + B(p^2 ,a) \). In the Gell-Mann-Low limit ofZ3/−1<∞ andm=0, eq. (2.9) givesB(p 2, α)=0 andA(p 2, α)=A(x 0) independent ofp 2 since scale invariance becomesexact. (It is worth recalling that, for finiteZ3/−1, one can always find a gauge in whichZ 2 is finite (i.e. cut-off independent) and therefore the «anomalous dimension”\(\gamma _e (a) = - \Lambda (\partial /\partial \Lambda )\ln Z_2 = 0\). In QED, there is the further exceptional simplification that the Callan-Symanzik function β(α)=0 and the anomalous dimension\(\gamma _e (a) = - \Lambda (\partial /\partial \Lambda )\ln Z_2 = 0\) are proportional to each other. Now, sinceZ3/−1 is finite,\(\gamma _e (a) = - \Lambda (\partial /\partial \Lambda )\ln Z_2 = 0\) and hence, β(α)=0. Consequently, in the finite gauge,β(α)=γ e(α)=0. Thus scale invariance becomes exact in the zero physical mass limit and eq. (2.11b) follows.) See.C. Callan andD. Gross:Phys. Rev. D,8, 4383 (1973), eq. (4.1).

  14. Equation (2.11) is a statement about thefull renormalized electron propagator for zero physical mass, in the Gell-Mann-Low limit. It shouldnot be confused with the unrenormalized «single-electron-line» electron propagator of conformal invariantm=0 QED in which all internal vacuum polarization subgraphs are omitted. See, for instance,M. Fry:Nucl. Phys. B,121, 343 (1977) and references therein. We also note here that, sinceF (1)=0 (whereF (1)(x) is the coefficient of the single-electron-loop vacuum polarization graphs without internal vacuum subgraphs) is only a necessary condition [1] for finite QED, it follows thateven ifF (1)(x)=0 admits a nontrivial solution,x≠0, the zero in questionmay not be the «real» zero ofF(x)=ψ(x)=0.

    Article  ADS  Google Scholar 

  15. In arriving at eq. (2.15), we have not madeexplicit use of the short-distance expansions which are known to be beset with «anomalies»; seeH. Schnitzer:Phys. Rev. D,8, 385 (1973).

    Article  ADS  Google Scholar 

  16. We call attention to the work ofG. Eilam andM. Gluck:Phys. Rev. D,13, 279 (1976), who have shown earlier that the vertex function in massless, finite QED is «bare»,i.e. Z 1=1. Their result depends, however, on the assumption of theexistence of anS-matrix form=0 theory and hence the analysis could be questioned.

    Article  ADS  Google Scholar 

  17. T. Eguchi:Phys. Rev. D,17, 611 (1978); see eq. (35).

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Ball andF. Zachariasen:Phys. Lett. B,106, 133 (1981);R. Acharya andP. Narayana Swamy:Phys. Rev. D,26, 2797 (1982). This is an extension of the original gauge method developed byA. Salam andR. Delburgo:Phys. Rev.,135, 1398 (1964).

    Article  ADS  Google Scholar 

  19. M. Baker andC. Lee:Phys. Rev. D,15, 2201 (1977).

    Article  ADS  Google Scholar 

  20. V. Miransky:Nuovo Cimento A,90, 149 (1985).

    Article  ADS  Google Scholar 

  21. C. Leung, S. Love andW. Bardeen:Nucl. Phys. B,273, 649 (1986).

    Article  ADS  Google Scholar 

  22. J. Kogut, E. Dagotto andA. Kocic:Phys. Rev. Lett.,62, 1001 (1989).

    Article  ADS  Google Scholar 

  23. M. Baker andK. Johnson:Physica A,96, 120 (1979).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to the memory of Heinz Pagels.

The authors of this paper have agreed to not receive the proofs for correction.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02813597.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, R., Narayana Swamy, P. No Gell-Mann and Low eigenvalue in quantum electrodynamics. Nuov Cim A 103, 1131–1138 (1990). https://doi.org/10.1007/BF02820540

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820540

PACS 11.10.Gh

PACS 11.10.Np

PACS 12.20.Ds

Navigation