Skip to main content
Log in

A criterion for uniqueness of a critical point inH 2 rational approximation

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

This paper presents a criterion for uniqueness of a critical point inH 2,R rational approximation of type (m, n), withmn-1. This criterion is differential-topological in nature, and turns out to be connected with corona equations and classical interpolation theory. We illustrate its use with three examples, namely best approximation of fixed type on small circles, a de Montessus de Ballore type theorem, and diagonal, approximation to the exponential function of large degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T,U,V :

unit circle, open unit disk, complement in\(\bar C\) of the closed unit disk

T r,U r,V r :

circle of radiusr, open disk of radiusr, complement in\(\bar C\) of the closed disk of radiusr (with centers at the origin)

P n :

space of real polynomials of degree at mostn; regarding the coefficients as coordinates, we endowP n with the Euclidean topology ofR n+1

M n :

monic real polynomials of degreen

\(\bar {\mathcal{M}}_n \) :

real polynomials of degree at mostn with constant coefficient equal to 1

\(\mathcal{M}_n^r \) :

monic real polynomials of degreen having all their roots inU r

\(\bar {\mathcal{M}}_n^r \) :

real polynomials of degree at mostn with constant coefficient equal to 1 having all their roots inV r

Δ n :

real monic polynomials of degreen having all their roots in\(\bar U\) alternatively closure ofM 1 n with respect to the Euclidean topology ofP n

\(\tilde \Delta _n \) :

real polynomials of degree at mostn with constant coefficient equal to 1 having all their roots in\(\bar V\); alternatively, closure of\(\widetilde{\mathcal{M}}_n^1 \) with respect to the Euclidean topology ofP n

‖·‖∞,‖·‖2:

norms inL (T) and inL 2(T), respectively

<·,·>:

scalar product inL 2(T)

L 2,R (T):

real subspace ofL 2(T) consisting of functions with real Fourier coefficients

H 2,R (U):

real Hardy space of exponent 2 of the unit disk consisting of functions inL 2,R(T) whose Fourier coefficients with negative index vanish

H 02,R (V):

real Hardy space of exponent 2 of the complement of the closed unit disk restricted to those functions vanishing at infinity; alternatively, orthogonal complement ofH 2,R (U) inL 2,R (T)

P +,P :

orthogonal projectionsL 2,R (T)→H 2,R (U) andL 2,R (T)→H 02,R (V), respectively

H ∞,R (U):

real subspace ofH 2,R (U) consisting of essentially bounded functions

\(\mathcal{R}_{m,n}^0 \left( V \right)\) :

subset ofH 02,R (V) consisting of rational functionsp/z m-n+1 q withpP m andqM 1 n

\(\widetilde{\mathcal{R}}_{m,n}^0 \left( U \right)\) :

subset ofH 2,R (U) consisting of rational functions\(\tilde p/\tilde q\) with\(\tilde p \in \mathcal{P}_m \) and\(\tilde q \in \widetilde{\mathcal{M}}_n^1 \)

References

  1. G. A. Baker, Jr.,Essentials of Padé Approximants, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. L. Baratchart,Sur l'approximation, rationnelle l 2 pour les systèmes dynamiques linéaires, Thèse de doctorat d'état, Université de Nice, 1987.

  3. L. Baratchart and M. Olivi,Index of critical points in l 2-approximation, Systems & Control Letters10 (1988), 167–174.

    Article  MATH  Google Scholar 

  4. L. Baratchart, M. Olivi and F. Wielonsky,On a rational approximation problem in the real Hardy space H 2. Theoretical Computer Science94 (1992), 175–197.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Baratchart, E. B. Saff and F. Wielonsky,Rational interpolation of the exponential function, Canad. J. Math.47 (1995), 1121–1147.

    MATH  MathSciNet  Google Scholar 

  6. L. Baratchart and F. Wielonsky,Rational approximation in the real Hardy space H 2 and Stieltjes integrals: a uniqueness theorem, Constr. Approx.9 (1993), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Braess,Nonlinear Approximation Theory, Springer Series in Computational Mathematics, Vol. 7, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  8. P. E. Caines,Linear Stochastic Systems, Probability and Mathematical Statistics, Wiley, New York, 1988.

    Google Scholar 

  9. J. Della Dora,Contribution à l'approximation de fonctions de la variable complexe au sens de Hermite-Padé et de Hardy, Thèse d'état, Univ. Scient. et Medicale de Grenoble, 1980.

  10. J. C. Doyle, B. A. Francis and A. R. Tannenbaum,Feedback Control Theory, Macmillan, New York 1992.

    Google Scholar 

  11. M. Duc-Jacquet,Approximation des fonctionelles linéaires sur les espaces Hilbertiens à noyaux reproduisants, Thèse d'état, Univ. Scient. et Medicale de Grenoble, 1973.

  12. V. D. Erohin,On the best approximation of analytic functions by rational functions, Doklady Akad. Nauk SSSR128 (1959), 29–32 (in Russian).

    MATH  MathSciNet  Google Scholar 

  13. S. Lang,Complex Analysis, Addison-Wesley, Reading, MA, 1977.

    MATH  Google Scholar 

  14. A. L. Levin,The distribution of poles of rational functions of best approximation and related questions, Math. USSR Sbornik9, No. 2 (1969), 267–274.

    Article  MATH  Google Scholar 

  15. L. Ljung,System Identification: Theory for the User, Prentice-Hall, New Jersey, 1987.

    MATH  Google Scholar 

  16. D. J. Newman,Approximation with Rational Functions, Regional Conf. Series41, AMS, Providence, Rhode Island, 1979.

    MATH  Google Scholar 

  17. O. Perron,Die Lehre von den Kettenbrüchen, 3rd ed., Vol. 2, B. G. Teubner, Stuttgart, 1957.

    MATH  Google Scholar 

  18. P. P. Petrushev and V. A. Popov,Rational Approximation of Real Functions, inEncyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  19. G. Pólya and G. Szegö,Problems and Theorems in Analysis, I, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  20. P. A. Regalia,Adaptative IIR Filtering in Signal Processing and Control, Dekker, New York, 1995.

    Google Scholar 

  21. E. B. Saff,An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions, J. Approx. Theory6 (1972), 63–67.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. B. Saff and R. S. Varga,On the zeros and poles of Padé approximants to e z.II, inPadé and Rational Approximations: Theory and Applications (E. B. Saff and R. S. Varge, eds.), Academic Press, New York, 1977, pp. 195–213.

    Google Scholar 

  23. T. Söderström,On the uniqueness of maximum likelihood identification, Automatica11 (1975), 193–197.

    Article  MATH  Google Scholar 

  24. L. N. Trefethen,The asymptotic accuracy of rational approximations to e z on a disk, J. Approx. Theory40 (1984), 380–383.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

  26. J. L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, AMS Colloq. Publ. XX, 1969.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research of this author was supported, in part, by NSF-INRIA cooperative research grant INT-9417234 as well as NSF grant DMS-9501130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratchart, L., Saff, E.B. & Wielonsky, F. A criterion for uniqueness of a critical point inH 2 rational approximation. J. Anal. Math. 70, 225–266 (1996). https://doi.org/10.1007/BF02820445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820445

Keywords

Navigation