Threshold effects of coastal urbanization onPhragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay

Abstract

The invasion of North American tidal marshes byPhragmites australis, or common reed, is a large-scale ecological problem that has been primarily studied at small spatial scales. Previous local-scale studies have provided evidence that the expansion ofPhragmites is facilitated by disturbance and increased nitrogen (N) associated with agricultural and urban-suburban (developed) land uses along wetland-upland borders. We tested the generality of previous findings across a larger spatial scale and wider range of environmental conditions in Chesapeake Bay, the largest estuarine ecosystem in the USA. We sampled 90 tidal wetlands nested within 30 distinct subestuarine watersheds and examined the relationship between land use andPhragmites abundance and foliar N, an indicator of nitrogen availability. We estimated land use adjacent to wetland borders and within subestuary watersheds and explored the importance of spatial proximity by weighting land use by its distance from the wetland border or subestuary shoreline, respectively. Regression tree and changepoint analyses revealed thatPhragmites abundance sharply increased in almost every wetland where development adjacent to borders exceeded 15%. Where development was <15% but natural land cover at the near the subestuary shoreline was low (<∼35%),Phragmites was abundant, suggesting that wetlands in highly modified watersheds also were susceptible to invasion, regardless of land use adjacent to wetlands.Phragmites foliar N was markedly elevated in watersheds with >14–22% shoreline development, the same level of development that corresponded to high levels of invasion. Our results suggest that development near wetlands is at least partially responsible for patterns of invasion across Chesapeake Bay. Larger-scale phenomena, such as nitrogen pollution at the watershed-subestuary scale, also may be facilitating invasion. Urbanization near coastlines appears to play an important role in the invasion success ofPhragmites in coastal wetlands of Chesapeake Bay and probably much of eastern North America.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  2. Bart, D. andJ. M. Hartman. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis, in salt marshes: New links to human activities.Estuaries 26:436–443.

    Article  Google Scholar 

  3. Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.

    Google Scholar 

  4. Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences of the United States of America 99:1395–1398.

    Article  CAS  Google Scholar 

  5. Bilkovic, D. M., C. H. Hershner, M. R. Berman, K. J. Havens, andD. M. Stanhope. 2005. Evaluating nearshore communities as indicators of ecosystem health, p. 365–379.In S. Bortone (ed.), Estuarine Indicators. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  6. Bilkovic, D. M., M. Roggero, C. H. Hershner, andK. H. Havens. 2006. Influence of land use on macrobenthic communities in nearshore estuarine habitats.Estuaries and Coast 29:1185–1195.

    Google Scholar 

  7. Boesch, D. F., R. B. Brinsfield, andR. E. Magnien. 2001. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture.Journal of Environmental Quality 30:303–320.

    CAS  Article  Google Scholar 

  8. Breiman, L., J. H. Friedman, R. A. Olshen, andC. J. Stone. 1984. Classification and Regression Trees. Wadsworth and Brooks/Cole, Monterey, California.

    Google Scholar 

  9. Burdick, D. M., R. Buchsbaum, andE. Holt. 2001. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes.Environmental and Experimental Botany 46:247–261.

    Article  CAS  Google Scholar 

  10. Burdick, D. M. andR. A. Konisky. 2003. Determinants of expansion forPhragmites australis, common reed, in natural and impacted coastal marshes.Estuaries 26:407–416.

    Article  Google Scholar 

  11. Carpenter, S. R. 2005. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus.Proceedings of the National Academy of Sciences of the United States of America 102:10,002–10,005.

    Article  CAS  Google Scholar 

  12. Castro, M. S., C. T. Driscoll, T. E. Jordan, W. G. Reay, andW. R. Boynton. 2003. Sources of nitrogen to estuaries in the United States.Estuaries 26:803–814.

    Article  CAS  Google Scholar 

  13. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  14. Comeleo, R. L., J. F. Paul, andP. V. August. 1996. Relationships between watershed stressors and sediment contamination in Chesapeake Bay estuaries.Landscape Ecology 11:307–319.

    Article  Google Scholar 

  15. De’Ath, G. andK. E. Fabricius. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis.Ecology 81:3178–3192.

    Article  Google Scholar 

  16. Deluca, W. V., C. E. Studds, L. L. Rockwood, andP. P. Marra. 2004. Influence of land use on the integrity of marsh bird communities of Chesapeake Bay, USA.Wetlands 24:837–847.

    Article  Google Scholar 

  17. Hale, S. S., J. F. Paul, andJ. F. Heltshe. 2004. Watershed landscape indicators of estuarine benthic condition.Estuaries 27:283–295.

    Article  Google Scholar 

  18. Hellings, S. E. andJ. L. Gallacher. 1992. The effects of salinity and flooding onPhragmites australis.Journal of Applied Ecology 29: 41–49.

    Article  Google Scholar 

  19. Huggett, A. J. 2005. The concept and utility of ‘ecological thresholds’ in biodiversity conservation.Biological Conservation 124:301–310.

    Article  Google Scholar 

  20. Jordan, T. E., D. L. Correll, andD. E. Weller. 1997. Relating nutrient discharges from watersheds to land use and streamflow variability.Water Resources Research 33:2579–2590.

    Article  CAS  Google Scholar 

  21. Jordan, T. E., D. E. Weller, andD. L. Correll. 2003. Sources of nutrient inputs to the Patuxent River estuary.Estuaries 26:226–243.

    Article  CAS  Google Scholar 

  22. King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. J. Jordan, P. F. Kazyak, andM. K. Hurd. 2005b. Spatial considerations for linking watershed land cover to ecological indicators in streams.Ecological Applications 15:137–153.

    Article  Google Scholar 

  23. King, R. S., J. R. Beaman, D. F. Whigham, A. H. Hines, M. E. Baker, andD. E. Weller. 2004a. Watershed land use is strongly linked to PCBs in white perch in Chesapeake Bay subestuaries.Environmental Science and Technology 38:6546–6552.

    Article  CAS  Google Scholar 

  24. King, R. S., A. H. Hines, F. D. Craige, andS. Grap. 2005a. Regional, watershed, and local correlates of blue crab and bivalve abundances in subestuaries of Chesapeake Bay, USA.Journal of Experimental Marine Biology and Ecology 319:101–116.

    Article  Google Scholar 

  25. King, R. S. andC. J. Richardson. 2003. Integrating bioassessment and ecological risk assessment: An approach to developing numerical water-quality criteria.Environmental Management 31: 795–809.

    Article  Google Scholar 

  26. King, R. S., C. J. Richardson, D. L. Urban, andE. A. Romanowicz. 2004b. Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem.Ecosystems 7:75–97.

    Article  CAS  Google Scholar 

  27. Leps, J. andV. Hadincova. 1992. How reliable are our vegetation analysis?Journal of Vegetation Science 3:119–124.

    Article  Google Scholar 

  28. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  29. Minchinton, T. E. andM. D. Bertness. 2003. Disturbance-mediated competition and the spread ofPhragmites australis in a coastal marsh.Ecological Applications 13:1400–1416.

    Article  Google Scholar 

  30. Minchinton, T. E., J. C. Simpson, andM. D. Bertness. 2006. Mechanisms of exclusion of native coastal marsh plants by an invasive grass.Journal of Ecology 94:342–354.

    Article  Google Scholar 

  31. Muradian, R. 2001. Ecological thresholds: A survey.Ecological Economics 38:7–24.

    Article  Google Scholar 

  32. Philipp, K. R. andR. T. Field. 2005.Phragmites australis expansion in Delaware Bay salt marshes.Ecological Engineering 25:275–291.

    Article  Google Scholar 

  33. Philips, E. A. 1959. Methods in Vegetation Study. Holt, New York.

    Google Scholar 

  34. Qian, S. S., R. S. King, andC. J. Richardson. 2003. Two statistical methods for the detection of environmental thresholds.Ecological Modelling 166:87–97.

    Article  CAS  Google Scholar 

  35. Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis abundance in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  36. Rickey, M. A. andR. C. Anderson. 2004. Effects of nitrogen addition on the invasive grassPhragmites australis and a native competitorSpartina pectinata.Journal of Applied Ecology 41:888–896.

    Article  Google Scholar 

  37. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences of the United States of America 99:2445–2449.

    Article  CAS  Google Scholar 

  38. Silliman, B. R. andM. D. Bertness. 2004. Shoreline development drives invasion ofPhragmites australis and the loss of plant diversity on New England salt marshes.Conservation Biology 18: 1424–1434.

    Article  Google Scholar 

  39. Soranno, P. A., S. L. Hubler, andS. R. Carpenter. 1996. Phosphorous loads to surface waters: A simple model to account for spatial pattern of land use.Ecological Applications 6:865–878.

    Article  Google Scholar 

  40. Steele, M. A. andG. E. Forrester. 2005. Small-scale field experiments accurately scale up to predict density dependencies in reef fish populations at large-scales.Proceedings of the National Academy of Sciences of the United States of America 102: 13,513–13,516.

    Article  CAS  Google Scholar 

  41. Urban, D. L. 2002. Classification and regression trees, p. 222–232.In B. McCune and J. B. Grace (eds.), Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  42. Vasquez, E. A., E. P. Glenn, J. J. Brown, G. R. Guntenspergen, andS. G. Nelson. 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reedPhragmites australis (Poaceae).Marine Ecology Progress Series 298:1–8.

    Article  Google Scholar 

  43. Weinstein, M. P. andJ. H. Balletto. 1999. Does common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  44. Weis, J. S., L. Windham, andP. Weis. 2003. Patterns of metal accumulation in leaves of the tidal marsh plantsSpartina alterniflora Loised andPhragmites australis Cav. Trin. ex. Steud. over the growing season.Wetlands 23:459–465.

    Article  Google Scholar 

  45. Weller, D. E., T. J. Jordan, D. L. Correll, andZ.-J. Liu. 2003. Effects of land use change on nutrient discharges from the Patuxent River watershed.Estuaries 26:244–266.

    Article  CAS  Google Scholar 

  46. Windham, L. andJ. G. Ehrenfeld. 2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh.Ecological Applications 13:883–897.

    Article  Google Scholar 

  47. Windham, L. andL. A. Meyerson. 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S.Estuaries 26:452–464.

    Article  Google Scholar 

  48. Wootton, J. T. 2001. Local interactions predict large-scale pattern in empirically derived cellular automata.Nature 413: 841–844.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  1. Chesapeake Bay Program. 2006. Population trends. http:// www.chesapeakebay.net/info/pop.cfm

  2. Regional Earth Sciences Application Center (RESAC). 2003. Land cover mapping of the Chesapeake Bay watershed. http://www. geog.umd.edu/resac/pdf/resac_mapping_primer_april2003.pdf.

  3. Therneau, T. M. and B. Atkinson. unpublished data. Mayo Foundation, Rochester, Minnesota. http://mayoresearch. mayo.edu/mayo/research/biostat/splusfunctions.cfm

  4. U.S. Environmental Protection Agency (USEPA). 2000. Multi-Resolution Land Characteristics Consortium (MRLC) database, http://www.epa.gov/mrlcpage.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan S. King.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, R.S., Deluca, W.V., Whigham, D.F. et al. Threshold effects of coastal urbanization onPhragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuaries and Coasts: J ERF 30, 469–481 (2007). https://doi.org/10.1007/BF02819393

Download citation

Keywords

  • Salt Marsh
  • Regression Tree
  • Watershed Scale
  • Tidal Wetland
  • Common Reed