Skip to main content
Log in

A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The edge based Galerkin finite element formulation is used as the basic building block for the construction of multidimensional generalizations, on unstructured grids, of several higher order upwind biased procedures originally designed for the solution of the 1D compressible Euler system of equations. The use of a central type discretization for the viscous flux terms enables the simulation of multidimensional flows governed by the laminar compressible Navier Stokes equations. Numerical issues related to the development and implementation of multidimensional solution algorithms are considered. A number of inviscid and viscous flow simulations, in different flow regimes, are analyzed to enable the reader to assess the performance of the surveyed formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aftomis, D. Gaitonde and T. Sean Tavares (1994). On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructured meshes. Technical Report 94-0415,AIAA Paper.

  2. AGARD (1992). Special course on unstructured grid methods for advection dominated flows. Technical Report 787, AGARD, Paris, France.

    Google Scholar 

  3. D. Ait-Ali-yahia, W. G. Habashi, A. Tam, M.-G. Vallet and M. Fortin (1996). A directional adaptive methodology using an edge-based error estimate on quadrilateral grids.International Journal for Numerical Methods in Fluids.23, 673–690.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. C. Almeida and A. C. Galeão (1996). An adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering.129, 157–176.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. C. Almeida, R. A. Feijo, A. C. Galeão, C. Padra and R. S. Silva (2000). Adaptive finite element computational fluid dynamics using an anisotropic error estimator.Computer Methods in Applied Mechanics and Engineering.182, 379–400.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Arminjon and A. Dervieux (1993). Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM Grids.Journal of Computational Physics.106, 176–198. also INRIA report 1111 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Babuska and W. C. Rheinboldt (1978). A posteriori error estimates for the finite element method.International Journal for Numerical Methods in Engineering.12, 1597–1615.

    Article  MATH  Google Scholar 

  8. I. Babuska, O. C. Zienkiewicz, J. P. R. Gago and A. Oliveira (Eds.) (1986).Accuracy Estimates and Adaptive Refinements in Finite Element Computations. John Wiley & Sons.

  9. T. J. Baker (1988). Generation of tetrahedral meshes around a complete aircraft. InNumerical Grid Generation in Computational Fluid Dynamics. 675–685, Pineridge Press.

  10. T. J. Barth (1991). Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes.AIAA Paper 91-0721.

  11. T. J. Barth (1994). Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. InLecture Notes 1994-05. von Karman Institute for Fluid Dynamics.

  12. T. J. Barth and D. C. Jesperson (1989). The design and application of upwind schemes on unstructured meshes.AIAA Paper 89-0366.

  13. J. T. Batina (1991). Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes.AIAA Journal.29, 1836–1843.

    MATH  Google Scholar 

  14. J. Bonet and J. Peraire (1990). An alternating digital tree (ADT) algorithm for 3-d geometric searching and intersection problems.International Journal for Numerical Methods in Engineering.31, 1–17.

    Article  MathSciNet  Google Scholar 

  15. A. N. Brooks and T. J. R. Hughes (1982). Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering.32, 199–259.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Cabello, K. Morgan and R. Löhner (1994). A comparison of higher order schemes used in a finite volume solver for unstructured grids.AIAA Paper 94-2293.

  17. A. J. Chorin (1967). A numerical method for solving incompressible viscous problems.Journal of Computational Physics.2, 12–26.

    Article  MATH  Google Scholar 

  18. P. A. B. De Sampaio, P. R. M. Lyra, K. Morgan and N. P. Weatherill (1993). Petrov-Galerkin solutions of incompressible Navier-Stokes equations in primitive variables with adaptive remeshing.Computer Methods in Applied Mechanics and Engineering.106, 143–178.

    Article  MATH  Google Scholar 

  19. H. Deconinck, R. Struijs, G. Bourgois, H. Paillère and P. L. Roe (1992). Multidimensional upwind methods for unstructured grids. InAGARD Report 787: Special Course on Unstructured Grid Methods for Advection Dominated Flows. Pages 4.1–5.17.

  20. M. Delanaye and A. Essers (1997). Quadratic-reconstruction finite volume scheme for compressible flows on unstructured adaptive grids.AIAA Journal.35, 631–639.

    MATH  Google Scholar 

  21. L. Demkowicz, P. R. B. Devloo and J. T. Oden (1985). On an h-type mesh refinement strategy based on a minimization of the interpolation error.Computer Methods in Applied Mechanics and Engineering.3, 67–89.

    Article  MathSciNet  Google Scholar 

  22. P. R. B. Devloo, J. T. Oden and T. Strouboulis (1987). Implementation of an adaptive refinement technique for the SUPG agorithm.Computer Methods in Applied Mechanics and Engineering.61, 339–358.

    Article  MATH  Google Scholar 

  23. K. P. Dimitriadis and M. A. Leschziner (1991). A cell-vertex TVD scheme for transonic viscous flow. InProceedings of 7th International Conference on Numerical Methods in Laminar and Turbulent Flow. Pineridge Press.

  24. J. Donéa (1984). A Taylor-Galerkin method for convective transport problems.International Journal for Numerical Methods in Engineering.20, 101–119.

    Article  MATH  Google Scholar 

  25. J. Donéa and L. Quartapelle (1992). An introduction to finite element methods for transient advection problems.Computer Methods in Applied Mechanics and Engineering.95, 169–203.

    Article  MATH  MathSciNet  Google Scholar 

  26. B. Einfeldt (1988). On Godunov-type methods for gas dynamics.SIAM Journal of Numerical Analysis.25(2), 294–318.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Einfeldt, C. D. Munz, P. L. Roe and B. Sjögreen (1991). On Godunov-type methods for near low densities.Journal of Computational Physics.92, 273–295.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. E. Elsgolc (1961).Calculus of Variations. Pergamon Press, Oxford.

    MATH  Google Scholar 

  29. J. Felcman (1998). Towards robust adaptive methods for the modelling of the compressible flows. InProceedings of ECCOMAS'98. Pages 502–507, John Wiley & Sons, Ltd.

  30. L. Formaggia, J. Peraire, K. Morgan and J. Peiró (1988). Implementation of a 3-D explicit Euler solver on a CRAY computer. InProceedings of the 4th International Symposium on Science and Engineering on CRAY Supercomputers. Pages 45–65, Minneapolis.

  31. P. J. Frey and P. L. George (2000).Mesh Generation. Hermes Science Publishing, 1th edition.

  32. J. P. R. Gago, D. W. Kelly, O. C. Zienkiewicz and I. Babuška (1983). A posteriori error analysis and adaptive processes in the finite element method-Part 1.International Journal for Numerical Methods in Engineering.19, 1621–1656.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. C. Galeão and E. G. Dutra do Carmo (1988). A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems.Computer Methods in Applied Mechanics and Engineering.68, 83–95.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Giles (1987). Energy stability analysis of multi-step methods on unstructured meshes. Technical Report CFDL-TR-87.1, M.I.T. CFD Laboratory Report.

  35. J. B. Goodman and R. J. Le Veque (1985). On the accuracy of stable schemes for 2-D scalar conservation laws.Mathematics of Computation.25, 15–21.

    Article  Google Scholar 

  36. P. M. Gresho (1991). Some current CFD issues relevant to the incompressible Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering.87, 201–252.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Harten and J. M. Hyman (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws.Journal of Computational Physics.50, 235–269.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Harten, P. D. Lax and B. van Leer (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.SIAM Review. 25, 35–61.

    Article  MATH  MathSciNet  Google Scholar 

  39. O. Hassan (1990).Finite Element Computation of High Speed Viscous Compressible Flows. PhD Thesis, University of Wales Swansea.

  40. O. Hassan, K. Morgan, J. Peraire, E. J. Probert and R. R. Thareja (1991). Adaptive unstructured mesh methods for steady viscous flow.AIAA Paper 91-1538.

  41. O. Hassan, E. J. Probert, K. Morgan and J. Peraire (1993). Line relaxation methods for the solution of 2D and 3D compressible viscous flows using unstructured meshes. InRecent Developments and Applications in Aeronautical CFD. Royal Aeronautical Society.

  42. O. Hassan, E. J. Probert, N. P. Weatherill, M. J. Marchant, K. Morgan and D. L. Marcum (1994). The numerical simulation of viscous transonic flow using unstructured grids.AIAA Paper 94-2346.

  43. J. C. Heinrich, P. S. Huyakorn, O. C. Zienkiewicz and A. R. Mitchell (1977). An upwind finite element scheme for two-dimensional convective transport equations.International Journal Numerical Methods in Engineering.11, 131–143.

    Article  MATH  Google Scholar 

  44. D. P. Hills (1996). Numerical aerodynamics: past successes and future challenges from an industrial point of view. In J.-A. Désidériet al. (Ed.).Computational Methods in Applied Sciences'96: Invited Lectures and Special Technological Sessions of the ECCOMAS Conference. Pages 166–173, John Wiley and Sons, Chichester.

    Google Scholar 

  45. C. Hirsch (1988).Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  46. C. Hirsch (1990).Numerical Computation of Internal and External Flows. Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  47. M. S. Holden and J. R. Mossele (1970). Theoretical and experimental studies of the shock waveboundary layer interaction on compression surfaces in hypersonic Flow. Technical Report ARL 70-0002, CALSPAN, University of Bufalo, Research Center.

  48. T. J. R. Hughes (1987).The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Inc.

  49. T. J. R. Hughes, L. P. Franca and M. Ballestra (1986). A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations.Computer Methods in Applied Mechanics and Engineering.59, 85–99.

    Article  MATH  MathSciNet  Google Scholar 

  50. T. J. R. Hughes, L. P. Franca and G. M. Hulbert (1989). A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations.Computer Methods Applied Mechanics Engineering.73, 173–189.

    Article  MATH  MathSciNet  Google Scholar 

  51. T. J. R. Hughes, J. T. Oden and M. Papadrakakis (Eds.) (2000).Computer Methods in Applied Mechanics and Engineering. Volume 189, Elsevier, Special Issue.

  52. A. Jameson (1993). Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows.AIAA Paper 93-3359.

  53. A. Jameson, T. J. Baker and N. P. Weatherill (1986). Calculation of inviscid transonic flow over a complete aircraft.AIAA Paper 86-0103.

  54. A. Jameson and W. Schmidt (1985). Some recent developments in numerical methods for transonic flows.Computer Methods in Applied Mechanics and Engineering.51, 467–493.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Jameson, W. Schmidt and E. Turkel (1981). Numerical simulation of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes.AIAA Paper 81-1259.

  56. B. N. Jiang and G. F. Carey (1988). A stable least-squares finite element method for non-linear hyperbolic problems.International Journal for Numerical Methods in Fluids.8, 993–942.

    Article  MathSciNet  Google Scholar 

  57. A. A. Johnson and T. E. Tezduyar (1999). Advanced mesh generation and update methods for 3D flow simulations.Computational Mechanics.23, 130–143.

    Article  MATH  Google Scholar 

  58. C. Johnson (1987).Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press.

  59. C. Johnson, U. Navert and J. Pitkäranta (1984). Finite element methods for linear hyperbolic problems.Computer Methods in Applied Mechanics and Engineering.45, 285–312.

    Article  MATH  MathSciNet  Google Scholar 

  60. C. Johnson, Y. Y. Nie and V. Thomée (1990). An a posteriori error estimate and automatic time step control for a backward discretization of a parabolic problem.SIAM Journal of Numerical Analysis.27, 277–291.

    Article  MATH  Google Scholar 

  61. D. Kuzmin and S. Turek (2002). Flux correction tools for finite elements.Journal of Computational Physics.175, 1–34.

    Article  MathSciNet  Google Scholar 

  62. R. J. Le Veque (1990).Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel.

    Google Scholar 

  63. M.-P. Leclercq, J. Periaux and B. Stoufflet (1989). Multigrid methods with unstructured meshes. InProceedings of the 7th International Conference on Finite Elements in Flow Problems. Pages 1113–1118, Hunstsville, Alabama.

  64. C. K. Lee and S. H. Lo (1994). A new scheme for the generation of graded quadrilateral mesh.Computers and Structures.52, 847–857.

    Article  MATH  Google Scholar 

  65. H. W. Liepmann and A. Roshko (1957).Elements of Gasdynamics. John Wiley & Sons, Inc.

  66. F. P. Lin (1995).Multigrid Method for Compressible Flows on Unstructured Grids. PhD Thesis, University of Wales, Swansea.

    Google Scholar 

  67. F. P. Lin, P. R. M. Lyra and K. Morgan (1997). Upwind edge-based finite element multigrid algorithm for aerodynamic calculations using unstructured grids. InProceedings of the XVIII Iberian-Latin-American Congress on Computational Methods in Engineering. Pages 1–8, Brasília/Brasil.

  68. M.-S. Liou (1996). A sequel to AUSM: AUSM+.Journal of Computational Physics.129, 364–382.

    Article  MATH  MathSciNet  Google Scholar 

  69. M.-S. Liou and J. R. Edwards (1999). AUSM schemes and extensions for low Mach and multiphase flows. Private Communication, March.

  70. M.-S Liou and C. J. Steffen (1993). A new flux splitting scheme.Journal of Computational Physics.107, 23–39.

    Article  MATH  MathSciNet  Google Scholar 

  71. R. Löhner (1993). Some useful renumbering strategies for unstructured grids.International Journal for Numerical Methods in Engineering.36, 3259–3270.

    Article  MATH  Google Scholar 

  72. R. Löhner (1994). Edges, stars, superedges and chains.Computer Methods in Applied Mechanics Engineering.111, 255–63.

    Article  MATH  Google Scholar 

  73. R. Löhner and K. Morgan (1986). Unstructured multigrid methods for elliptic problems.International Journal for Numerical Methods in Fluids. 24, 101–115.

    Google Scholar 

  74. R. Löhner, K. Morgan, J. Peraire and M. Vahdati (1987). Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations.International Journal for Numerical Methods in Fluids.7, 1093–1109.

    Article  MATH  Google Scholar 

  75. R. Löhner, K. Morgan and O. C. Zienkiewicz (1984). The solution of non-linear hyperbolic equation systems by the finite element method.International Journal for Numerical Methods in Fluids.4, 1043–1063.

    Article  MATH  MathSciNet  Google Scholar 

  76. R. Löhner, K. Morgan and O. C. Zienkiewicz (1986). Adaptive grid refinement for the compressible Euler equations. In I. Babuškaet al. (Ed.),Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Pages 281–297, John Wiley & Sons.

  77. R. Löhner, C. Yang and J. D. Baum (1996). Rigid and flexible store separation simulation using dynamic adaptive unstructured grid technologies. InProceedings of the First AFOSR Conference on Dynamic Motion CFD. New Brunswick, New Jersey.

  78. H. Luo, J. D. Baum, R. Löhner and J. Cabello (1993). Adaptive edge-based finite element schemes for the Euler and Navier-Stokes equations on unstructured grids.AIAA Paper 93-0336.

  79. P. R. M. Lyra (1994).Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat Conduction. PhD Thesis, University of Wales Swansea.

    Google Scholar 

  80. P. R. M. Lyra, F. P. C. Almeida, F. S. Araújo and D. K. E. de Carvalho (2001). Some aspects of different mesh adaptation strategies in the FEM analysis: local mesh embedding, global remeshing and local remeshing. InERMAC2001—Regional Congress on Applied and Computational Mathematics. Recife, Brasil.

  81. P. R. M. Lyra and R. C. Almeida (2000). A preliminary study on the performance of stabilized finite element CFD methods on triangular, quadrilateral and mixed unstructured meshes. InFinite Elements in Flow Problems 2000 (FEF 2000). Austin/Texas-USA.

  82. P. R. M. Lyra and D. K. E. de Carvalho (2000). A flexible unstructured mesh generator for transient anasitropic remeshing. InEuropean Congress on Computational Methods in Applied Sciences and Engineering 2000. Barcelona, Spain. In CD-ROM.

  83. P. R. M. Lyra, D. K. E. de Carvalho, R. C. C. Almeida and R. A Feijóo (2000). Anisotropic bidimensional unstructured mesh generation and adaptation for finite element flow simulation. InCILAMCE 2000—Iberian Latin American Congress on Computational Methods in Engineering. Rio de Janeiro, Brasil. in CD-ROM.

  84. P. R. M. Lyra, D. K. E. de Carvalho, R. M. Pereira de Carvalho and R. C. C. Almeida (2001). Finite element compressible flow computation using a transient anisotropic remeshing procedure. InECCOMAS Computational Fluid Dynamics 2001 Conference. Swansea, UK. In CD-ROM.

  85. P. R. M. Lyra, D. K. E. de Carvalho and R. B. Willmersdorf (1998). Adaptive triangular, quadrilateral and hybrid unstructured mesh generation with classical resequencing techniques. InProceedings of the 4th World Conference on Computational Mechanics (WCCM'98). Buenos Aires/Argentina. In CD-ROM.

  86. P. R. M. Lyra, O. Hassan and K. Morgan (1995). Unstructured grid adaptive solutions of hypersonic viscous flows. In4th International Conference on Numerical Methods for Fluid Dynamics. Oxford.

  87. P. R. M. Lyra, M. T. Manzari, K. Morgan, O. Hassan and J. Peraire (1995). Side-based unstructured grid algorithms for compressible viscous flow computations.International Journal for Engineering Analysis and Design.2, 88–102.

    Google Scholar 

  88. P. R. M. Lyra and K. Morgan (1995). The construction, implementation and comparative study of high-resolution unstructured grid algorithms for high speed flow simulation. In3rd U.S. National Congress on Computational Mechanics. Dallas/USA.

  89. P. R. M. Lyra and K. Morgan (1995). MUSCL type high-resolution algorithms for the solution of high-speed compressible flow problems on triangular grids. InProceedings of the 3rd ACME Conference on Computational Mechanics in the UK. Oxford. Oxford Unversity-Computing Laboratory.

    Google Scholar 

  90. P. R. M. Lyra and K. Morgan (1995). Procedures for constructing high-resolution schemes for the solution of the gasdynamic equations on general grids. InProceedings of the XVIII Iberian-Latin-American Congress on Computational Methods in Engineering. Pages 1–11, Curitiba/Brasil.

  91. P. R. M. Lyra and K. Morgan (2000). A review and comparative study of upwind biased schemes for compressible flow computation. Part I: 1-D first-order schemes.Archives of Computational Methods in Engineering.7(1), 19–55.

    Article  MATH  MathSciNet  Google Scholar 

  92. P. R. M. Lyra and K. Morgan (2000). A review and comparative study of upwind biased schemes for compressible flow computation. Part II: 1-D higher-order schemes.Archives of Computational Methods in Engineering.7(3), 333–377.

    Article  MATH  MathSciNet  Google Scholar 

  93. P. R. M. Lyra, K. Morgan and J. Peraire (1993). A high-resolution flux splitting scheme for the solution of the compressible Navier-Stokes equations on triangular grids.Notes in Numerical Fluid Mechanics Volume 47: Numerical Methods for Navier-Stokes Equations.47, 167–180.

    Google Scholar 

  94. P. R. M. Lyra, K. Morgan, J. Peraire and J. Peiró (1993). Unstructured grid FEM/TVD algorithm for systems of hyperbolic conservation laws. InProceedings of 8th International Conference on Numerical Methods in Laminar and Turbulent Flow. Pages 1408–1420. Pineridge Press.

  95. P. R. M. Lyra, K. Morgan, J. Peraire and J. Peiró (1994). TVD algorithms for the solution of the compressible Euler equations on unstructured meshes.International Journal for Numerical Method in Fluids.19, 827–847.

    Article  MATH  Google Scholar 

  96. P. R. M. Lyra, R. B. Willmersdorf, M. A. D. Martins and A. L. G. A. Coutinho (1998). Parallel implementation of edge-based finite element schemes for compressible flows on unstructured grids. InProceedings of the Third International Meeting on Vector and Parallel Processing (VECPAR'98). Porto/Portugal.

  97. M. T. Manzari, P. R. M. Lyra, K. Morgan and J. Peraire (1993). An unstructured grid FEM/MUSCL algorithm for the compressible Euler equations. InProceedings of VIII International Conference on Finite Elements in Fluids: New Trends and Applications. Pages 379–388.

  98. M. T. Manzari (1996).An Unstructured Grid Finite Element Algorithm for Compressible Turbulent Flow Computations. PhD Thesis, University of Wales Swansea.

    Google Scholar 

  99. D. L. Marcum (1995). The generation of unstructured grids for viscous flow applications.AIAA Paper 95-0212.

  100. D. J. Mavriplis (1988). Multigrid solution of two-dimensional Euler equations on unstructured triangular meshes.AIAA Journal. 26, 824–831.

    MATH  Google Scholar 

  101. D. J. Mavriplis (1994). A three-dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes.AIAA Paper 94-1878.

  102. D. J. Mavriplis, A. Jameson and L. Martinelli (1989). Multigrid solution of the Navier-Stokes equations on triangular meshes. Technical report, ICASE 89-11.

  103. S. Maza, F. Noel and J. C. Leon (1999). Generation of quadrilateral meshes on free-form surfaces.Computers & Structures.71, 505–524.

    Article  MathSciNet  Google Scholar 

  104. K. Morgan and J. Peraire (1998). Unstructured grid finite-element methods for fluid mechanics.Reports on Progress in Physics.61, 569–638.

    Article  Google Scholar 

  105. K. Morgan, J. Peraire and J. Peiró (1992). Unstructured grid methods for compressible flows. InReport 787: Special Course on Unstructured Grid Methods for Advection Dominated Flows. AGARD, Paris.

    Google Scholar 

  106. K. Morgan, N. P. Weatherill, O. Hassan, M. T. Manzari, L. B. Bayne and P. J. Brookes (1998). Parallel processing for large scale aerospace engineering simulations. In D. R. Emersonet al. (Ed.)Parallel Computational Fluid Dynamics '97. Pages 15–22. Elsevier.

  107. K. W. Morton (1982). Generalised Galerkin methods for steady and unsteady problems. In K.W. Morton and M.J. Baines (Eds.)Numerical Methods for Fluid Dynamics. Pages 1–32. Academic Press.

  108. B. Muller, J. Sesterhenn and H. Thomann (1992). Preconditioning and flux vector splitting for compressible low Mach number flow. InLecture Notes on Physics 414: 13th International Conference on Numerical Methods in Fluid Dynamics. Pages 125–129, Rome, Springer-Verlag.

    Google Scholar 

  109. J. Peiró, J. Peraire and K. Morgan (1994). FELISA system reference manual: Part 1—basic theory. Technical report, University of Wales Swansea Report CR/821/94.

  110. J. Peraire (1986).A Finite Element Method for Convection Dominated Flows. PhD Thesis, University of Wales Swansea.

    Google Scholar 

  111. J. Peraire, K. Morgan and J. Peiró (1989). Unstructured finite element mesh generation and adaptive procedures for CFD. InAGARD Proc. Application of Mesh Generation to Complex 3-D Configurations. Pages 18.1–18.12. AGARD.

  112. J. Peraire, K. Morgan, and J. Peiró (1990). Unstructured mesh methods for CFD. Technical Report 90-04, Imperial College Aeronautics Department.

  113. J. Peraire, K. Morgan, M. Vahdati and J. Peiró (1994). The construction and behavior of some unstructured grid algorithms for compressible flows. InProceedings of the ICFD Conference on Numerical Methods for Fluid Dynamics. Pages 221–229. Oxford University Press.

  114. J. Peraire, J. Peiró and K. Morgan (1992). A 3-D finite element multigrid solver for the Euler equations.AIAA Paper 92-0449.

  115. J. Peraire, J. Peiró and K. Morgan (1993). Finite element multigrid solution of Euler flows past installed aero-engines.Computational Mechanics. 11, 433–451.

    Article  MATH  Google Scholar 

  116. J. Peraire, J. Peiró and K. Morgan (1993). Multigrid solution of the 3-D compressible Euler equations on unstructured tetrahedral grids.International Journal for Numerical Methods in Engineering. 36, 1029–1044.

    Article  MATH  Google Scholar 

  117. J. Peraire, M. Vahdati, K. Morgan and O. C. Zienkiewicz (1987). Adaptive remeshing for compressible flow computations.Journal of Computational Physics. 72, 449–466.

    Article  MATH  Google Scholar 

  118. P. L. Roe (1981). Approximate Riemann solvers, parameter vectors and difference schemes.Journal of Computational Physics. 43, 357–372.

    Article  MATH  MathSciNet  Google Scholar 

  119. P. L. Roe (1989). A survey of upwind differencing techniques.Lecture Notes in Physics.323, 69–78.

    MathSciNet  Google Scholar 

  120. P. Rostand and B. Stoufflet (1988). Finite volume Galerkin methods for viscous gas dynamics. Technical Report 863, INRIA.

  121. D. H. Rudy, J. L. Thomas, A. Kumar, P. A. Gnoffo and S. R. Chakravartht (1989). A validation study of four Navier-Stokes codes for high-speed flows.AIAA Paper 89-1838.

  122. D. H. Rudy, J. L. Thomas, A. Kumar, P. A. Gnoffo and S. R. Chakravarthy (1991). Computation of laminar hypersonic compression-corner flows.AIAA Journal. 29, 1108–1113.

    Google Scholar 

  123. C. L. Rumsey, B. van Leer and P. L. Roe (1993). A multidimensional flux function with applications to Euler and Navier-Stokes equations.Journal of Computational Physics. 105, 306–323.

    Article  MATH  MathSciNet  Google Scholar 

  124. Y. Saad and M. H. Schultz (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM Journal of Scientific and Statistical Computing.7, 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  125. F. Shakib, J. R. Hughes and Z. Johan (1989). A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis.Computer Methods in Applied Mechanics and Engineering.75, 415–456.

    Article  MATH  MathSciNet  Google Scholar 

  126. C.-W. Shu (1988). Total variation diminishing time discretizations.SIAM Journal of Scientific and Statistical Computing.9, 1073–1084.

    Article  MATH  Google Scholar 

  127. C.-W. Shu, T. A. Zang, G. Erlebacher, D. Whitaker and S. Osher (1992). High-order ENO schemes applied to two- and three-dimensional compressible flow.Applied Numerical Mathematics.9, 45–71.

    Article  MATH  Google Scholar 

  128. G. Sod (1985).Numerical Methods for Fluid Dynamics. Cambridge University Press.

  129. S. Soltani (1991).An Upwind Scheme for the Equations of Compressible Flow on Unstructured Grids. PhD Thesis, University of London-Imperial College of Science, Technology and Medicine.

  130. K. A. Sørensen (2002).A Multigrid Accelerated Procedure for the Solution of Compressible Fluid Flow on Unstructured Hybrid Meshes. PhD Thesis, University of Wales Swansea.

    Google Scholar 

  131. K. A. Sørensen, O. Hassan, K. Morgan and N. P. Weatherill. Agglomeration multigrid on hybrid meshes for compressible viscous flows. InProceedings of the ECCOMAS European Computational Fluid Dynamics Conference. In CD-ROM.

  132. T. Strouboulis and J. T. Oden (1990). A posteriori error estimation of finite element approximations in fluid mechanics.Computer Methods in Applied Mechanics and Engineering.78, 201–242.

    Article  MATH  MathSciNet  Google Scholar 

  133. R. C. Swanson, E. Turkel and J. A. White (1991). An effective multigrid method for high-speed flows. InProceedings of the Fifth Copper Mountain Conference on Multigrid Methods.

  134. P. K. Sweby (1984). High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM Journal of Numerical Analysis.21, 995–1011.

    Article  MATH  MathSciNet  Google Scholar 

  135. T. E. Tezduyar (1992). Finite element computation of unsteady incompressible flows involving moving boundaries and interfaces and iterative solution strategies. InReport 787: Special Course on Unstructured Grid Methods for Advection Dominated Flows. Pages 3.1–2.45. AGARD, Paris.

    Google Scholar 

  136. T. E. Tezduyar (1999). CFD methods for 3D computation of complex flow problems.Wind Engineering and Industrial Aerodynamics.81, 97–116.

    Article  Google Scholar 

  137. R. R. Thareja, R. K. Prabhu, K. Morgan, J. Peraire, J. Peiró and S. Soltani (1990). Applications of an adaptive unstructured solution algorithm to the analysis of high speed flows.AIAA Paper 90-0395.

  138. J. L. Thomas (1991). An implicit multigrid scheme for hypersonic strong-interaction flowfields. InProceedings of the 5th Copper Mountain Conference on Multigrid Methods.

  139. J. F. Thompson, B. K. Soni and N. P. Weatherill (Eds.) (1999).Handbook of Grid Generation. CRC Press.

  140. E. R. van Driest (1952). Investigation of laminar boundary layer in compressible fluids using the Crocco method. Technical Report 2597, NASA.

  141. B. van Leer (1992). Progress in multidimensional upwind differencing. InLecture Notes on Physics 414: 13th International Conference on Numerical Methods in Fluid Dynamics. Pages 1–26. Springer-Verlag.

  142. Y. Wada and M.-L. Liou (1994). A flux splitting scheme with high-resolution and robustness for discontinuities.AIAA Paper 94-0083.

  143. N. P. Weatherill (1990). Mesh generation in computational fluid dynamics. Technical Report 1990-10, von Karman Institute for Fluid Dynamics.

  144. D. L. Whitaker, B. Grossman and R. Löhner (1989). Two-dimensional Euler computations on a triangular mesh using an upwind finite-volume scheme.AIAA Paper 89-0470.

  145. R. B. Willmersdorf, P. R. M. Lyra, M. A. D. Martins and A. L. G. A. Coutinho (1998). Parallel/vector implementation of a FEM algorithm for the solution o Euler equations using an edge-based data structure. InV North-Northest Congress on Mechanical Engineering (V CEM-NNE/98). Volume 3, pages 19–16, Fortaleza/Brasil. In portuguese.

  146. H. C. Yee (1989). A class of high-resolution explicit and implicit shock-capturing methods. Technical Memorandum 101088, NASA Ames Research Center.

  147. H. C. Yee, G. H. Klopfer and J.-L. Montagné (1990). High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows.Journal of Computational Physics. 88(1), 31–61.

    Article  MATH  MathSciNet  Google Scholar 

  148. M. A. Yerry and M. S. Shephard (1990). Automatic three dimensional mesh generation by modified-octree technique.International Journal for Numerical Methods in Engineering. 20.

  149. X. D. Zhang, J.-Y. Trépanier, M. Reggio, A. Benmeddour and R. Camarero (1996). Grid influence on upwind schemes for the Euler and Navier-Stokes equations.AIAA Journal. 34, 717–727.

    Article  Google Scholar 

  150. O. C. Zienkiewicz and R. L. Taylor (1988).The Finite Element Method: Basic Formulation and Linear Problems. Volume 1, McGraw-Hill, 4th edition.

  151. O. C. Zienkiewicz and R. L. Taylor (1991).The Finite Element Method: Solid and Fluid Mechanics, Dynamics and Non-Linearity, Volume 2, McGraw-Hill.

  152. O. C. Zienkiewicz and J. Z Zhu (1987). A simple error estimator and adaptive procedure for practical engineering analysis.International Journal for Numerical Methods in Engineering.24, 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  153. O. C. Zienkiewicz and J. Z. Zhu (1992). Superconvergent recovery techniques and a posteriori error estimation in F.E.M.-Part 1: A general superconvergent recovery technique.International Journal for Numerical Methods in Engineering. 33, 1331–1382.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyra, P.R.M., Morgan, K. A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids. Arch Computat Methods Eng 9, 207–256 (2002). https://doi.org/10.1007/BF02818932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818932

Keywords

Navigation