Skip to main content
Log in

Effect of starvation and chloramphenicol on acceleration of bacterial dihexyl sulfosuccinate biotransformation

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Starvation for carbon and energy sources accelerated the biotransformation of the anion-active surfactant dihexyl sulfosuccinate (DHS) byComamonas terrigena cells. Cloramphenicol (Cm) added at different time intervals to non-starved cells inhibited the DHS transformation. The largest difference between cells treated and non-treated by Cm was observed for a 16-h-starvation period. Protein synthesisde novo during starvation enhanced the DHS biotransformation efficiency. A partial transformation of DHS in the presence of Cm indicated the constitutive character of enzymes involved in primary DHS biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chmelárová Ž., Závadská I., Húska J., Tóth D.: Dihexyl sulfosucinate biodegradation by mixed cultures.Folia Microbiol. 45, 491–492 (2000).

    Google Scholar 

  • Fegatella F., Caviccholi R.: Physiological responses to starvation in the marine oligotrophic ultramicrobacteriumSphingosomonas sp. strain RB 2256.Appl. Environ. Microbiol. 66, 2037–2044 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gregorová D., Augustín J., Vrbanová A., Sládeková D., Cserháti T.: Primary biodegradation of a series of alkyl sulfosucinates by mixed bacterial culture.Folia Microbiol. 44, 323–327 (1999).

    Article  Google Scholar 

  • Hartke A., Giard J.-Ch., Laplace J.-M., Auffray Y.: Survival ofEnterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis.Appl. Environ. Microbiol. 64, 4238–4245 (1998).

    PubMed  CAS  Google Scholar 

  • Hayashi K.: A rapid determination of sodium dodecylsulphate with methylene blue.Anal. Biochem. 67, 503–506 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Herbraud M., Dubois E., Potier P., Labadie J.: Effect of growth temperatures on the protein levels in a psychrotrophic bacteriumPseudomonas fragi.J. Bacteriol. 13, 4017–4024 (1994).

    Google Scholar 

  • Húska J., Závadská I., Tóth D.: Effect of carbon starvation of bacteria on acceleration of surfactant biotransformation.Biologia 52, 753–758 (1997).

    Google Scholar 

  • Kjelleberg S., Albertson N., Flärdh K., Holmquist L., Jouper-Jaan A., Marouga R., Ostling J., Svenblad B., Weichart D.: How do non-differentiating bacteria adapt to starvation?Antonie van Leeuwenhoek 63, 333–341 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Kolter R., Siegele D.A., Tormo A.: The stationary phase of the bacterial life cycle.Ann. Rev. Microbiol. 47, 855–874 (1993).

    Article  CAS  Google Scholar 

  • Matin A.: Molecular analysis of starvation stress inEscherichia coli.FEMS Microbiol. Ecol. 74, 185–195 (1990).

    Article  CAS  Google Scholar 

  • Morton D.S., Oliver J.D.: Induction of carbon starvation-induced proteins inVibrio vulnificus.Appl. Environ. Microbiol. 10, 3653–3659 (1994).

    Google Scholar 

  • Ostling J., Holmquist L., Flärdh K., Svenblad B., Jouper-Jaan A., Kjelleberg S.: Starvation and recovery ofVibrio, pp. 103–127 in S. Kjelleberg (Ed.)Starvation in Bacteria, Plenum Press, New York 1993.

    Google Scholar 

  • Prokšová M., Augustín J., Vrbanová A.: Enrichment, isolation and characterization of dialkyl sulfosuccinate degrading bacteriaComamonas terrigena N3H andComamonas terrigena N1C.Folia Microbiol. 42, 635–639 (1997).

    Article  Google Scholar 

  • Roig M.G., Pedraz M.A., Sanchez J.M., Húska J., Tóth D.: Sorption isoterms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II.Comamonas terrigena N3HJ. Mol. Cat. B. Enzym. 4, 271–281 (1998).

    Article  CAS  Google Scholar 

  • Siegele D.A., Kolter R.: Life after log.J. Bacteriol. 174, 345–348 (1992).

    PubMed  CAS  Google Scholar 

  • Smeulders M.J., Keer J., Speight R.A., Williams H.D.: Adaptation ofMyxobacterium smegmatis to stationary phase.J. Bacteriol. 181, 270–283 (1999).

    PubMed  CAS  Google Scholar 

  • Srinivasan S., Ostling J., Charlton T., Nys R.D., Takayama K., Kjelleberg S.: Extracellular signal molecule(s) involved in the carbon starvation response of marineVibrio sp. strain S14.J. Bacteriol. 180, 201–209 (1998).

    PubMed  CAS  Google Scholar 

  • Tayne W., Lavernan A., Bohland M., Braster M., Ritterhaus S., Groeneweg J., van Verseveld H.D.: Maintenance energy demand in starvation recovery dynamics ofNitrosomonas europaea andNitrobacter winogradskyi cultivated in retentostat with complete biomass retention.Appl. Environ. Microbiol. 65, 2471–2477 (1999).

    Google Scholar 

  • Tóth D., Húska J., Závadská I., Dobrotová M.: Effect of bacterial starvation on surfactant biotransformation.Folia Microbiol. 41, 477–479 (1996).

    Article  Google Scholar 

  • Truex M.J., Brockmann F.J., Johnstone D.L., Frederickson J.K.: Effect of starvation on induction of quinoline degradation for a subsurface bacterium in a continuous-flow column.Appl. Environ. Microbiol. 8, 2386–2392 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmelárová, Ž., Závadská, I., Húska, J. et al. Effect of starvation and chloramphenicol on acceleration of bacterial dihexyl sulfosuccinate biotransformation. Folia Microbiol 45, 493–495 (2000). https://doi.org/10.1007/BF02818716

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818716

Keywords

Navigation