Skip to main content
Log in

Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Six copper-resistant bacterial strains were isolated from wastewater of tanneries of Kasur and Rohi Nala. Two strains tolerated copper at 380 mg/L, four up to 400 mg/L. Three strains were identified as members of the genusSalmonella; one strain was identified asStreptococcus pyrogenes, one asVagococcus fluvialis and the last was identified asEscherichia coli. The pH and temperature optimum for two of them were 7.0 and 30 °C, respectively; four strains had corresponding optima at 7.5 and 37 °C, respectively. All bacterial isola-tes showed resistance against Ag+ (280–350 mg/L), Co2+ (200–420), CrVI (280–400), Cd2+ (250–350), Hg2+ (110–200), Mn2+ (300–380), Pb2+ (300–400), Sn2+ (480–520) and Zn2+ (300–450). Largesized plasmids (>20 kb), were detected in all of the strains. After the isolates were cured of plasmids with ethidium bromide, the efficiency of curing was estimated in the range of 60–90%. Reference strain ofE. coli was transformed with the plasmids of the bacterial isolates which grew in Luria-Bertani medium containing 100 mg/L Cu2+. The capability to adsorb and afterwards accumulate Cu2+ inside their cells was assayed by atomic absorption spectrophotometer; all bacterial cells had the ability to adsorb 50–80 % of the Cu2+ and accumulate 30–45 % Cu2+ inside them after 1 d of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiking H., Grover H., Vantriet J.: Detoxification of mercury, cadmium and lead inKlebsiella aerogenes NCTC 418 growing in continuous culture.Appl. Environ. Microbiol. 50, 1262–1267 (1985).

    PubMed  CAS  Google Scholar 

  • Aviles M., Codina J.C., Perez-Garcia A., Cazorla F., Romero P., De Vincente A.: Occurrence of resistance to antibiotics and metals and of plasmids in bacterial strains isolated from marine environment, pp. 475–478 in R.W. Morris, W.O.K. Grabow, A.P. Dufour (Eds):Health Related Water Microbiology, Vol. 27. Pergamon Press, Oxford (UK) 1993.

    Google Scholar 

  • Anisimova L.A., Boronin A.M.: Resistance to metal determined by plasmid of Gram-negative bacteria.Mol. Gen. Microbiol. 12, 3–9 (1994).

    Google Scholar 

  • Bender J., Lee R.F., Philips P.: Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation.Industr. Microbiol. 14, 113–118 (1995).

    Article  CAS  Google Scholar 

  • Beach I.R., Palmiter R.D.: Amplification ofMT-1 gene in cadmium resistant mouse cells.Proc. Nat. Acad. Sci. USA 78, 2100–2114 (1981).

    Article  Google Scholar 

  • Benson H.J.:Microbiological Applications, Complete Version. Laboratory Manual in General Microbiology. W.C. Brown Publishers, Dubuque (USA) 1994.

    Google Scholar 

  • Brown T.A., Smith D.G.: The effect of silver nitrate on the growth and ultrastructure, of yeastCryptococcus albidus.Microbios Lett. 3, 155–162 (1976).

    CAS  Google Scholar 

  • Capasso C., Nazzaro F., Marulli F., Capasso A., La Cara F., Parisi E.: Identification of high-molecular weight cadmium-binding protein in copper-resistantBacillus acidocaldarius cells.Res. Microbiol. 147, 287–296 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C., Silver S.: Metal resistant system inPseudomonas.Rev. Latinoam. Microbiol. 38, 45–64 (1996).

    PubMed  CAS  Google Scholar 

  • Cheesbrough M.:Medical Laboratory Manual for Tropical Countries, Vol. 2, Microbiology. ELBS University Press, Cambridge (UK) 1993.

    Google Scholar 

  • Collee J. G., Marr W.: Culture containers and culture media, pp. 100–120 in J.G. Collee, J.P. Duguid, A.G. Fraser, B.P. Marmion (Eds):Mackie and MacCartney Practical Medical Microbiology, Vol. 2. Churchill Livingstone, Medical Division of Longman Group, Edinburgh-London-Melbourne-New York 1998.

    Google Scholar 

  • Cooksey D.A.: Copper up take and resistance in bacteria.Mol. Microbiol. 7, 1–5 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Cooksey D.A.: Molecular mechanisms of copper resistance and accumulation in bacteria.FEMS. Microbiol. Rev. 14, 381–386 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Crosa J.H., Tolmasky M.E., Actis L.A., Falkow S.: Plasmids, pp. 365–386 in P. Gerhardt, R.G.S. Murray, W.A. Wood, N.R. Kreig (Eds).Methods for General and Molecular Biology. American Society for Microbiology, Washington (DC) 1994.

    Google Scholar 

  • Collard J.M., Corbisier P., Diels L., Dong Q., Jeanthon C., Mergeay M., Taghavi S., Van Der Lelie, D., Wilmotte A., Wuertz S.M.: Plasmids for heavy metal resistance inAlcaligenes eutrophus CH34 mechanisms and applications.FEMS Microbiol. Rev. 14, 405–414 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Fitch M.W., Graham D.W., Arnold R.G., Agarwal S.K., Phelps P.: Phenotypic characterization of copper resistant mutants ofMethylosinus trichosporium.Appl. Environ. Microbiol. 59, 2771–2776 (1993).

    PubMed  CAS  Google Scholar 

  • Fong S.T., Camakaris J., Lee B.T.: Molecular genetics of a chromosomal locus involved in copper tolerance inEscherichia coli K12.Mol. Microbiol. 15, 1127–1137 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Foster T.J.: Plasmid determined resistance to antimicrobial drugs and external ions in bacteria.Microbiol. Rev. 47, 361–409 (1983).

    PubMed  CAS  Google Scholar 

  • Fostner U., Wittman G.T.W.:Metal Pollution in the Aquatic Environment. Springer-Verlag, New York 1997.

    Google Scholar 

  • Francis A.J.: Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes.Experientia 46, 840–851 (1990).

    Article  CAS  Google Scholar 

  • Gadd G.M.: Heavy metal accumulation by bacteria and other microorganisms.Appl. Environ. Microbiol. 46, 834–840 (1990).

    CAS  Google Scholar 

  • Ge Z., Hiratsuka K., Taylor D.E.: Nucleotide sequence and mutational analysis indicate that twoHelicobacter pylori gene encode aP-type ATPase and cation-binding protein associated with copper transport.Mol. Microbiol. 15, 97–106 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Gómez M.A., Gonzalez-López J., Calvo C.: Antibiotic resistance patterns of coliforms isolated from six protected wetlands in the southeast of Spain.Folia Microbiol. 45, 555–560 (2000).

    Google Scholar 

  • Gordon A.S., Harword V.J., Sayar S.: Growth, copper tolerant cells and extracellular protein production in copper stressed chemostat cultures ofVibrio alginolyticus.Appl. Environ. Microbiol. 59, 60–66 (1993).

    PubMed  CAS  Google Scholar 

  • Grindle M.: Isolation and characterization of vinclozolin resistant mutants ofNeurospora crassa.Trans. Brit. Mycol. Soc. 82, 635–643 (1984).

    CAS  Google Scholar 

  • Gupta S.D., Lee B.T., Camakaris J., Wu H.C.: Identification ofcutC andcutF (nlpE) genes involved in copper tolerance inEscherichia coli.J. Bacteriol. 177, 4207–4215 (1995).

    PubMed  CAS  Google Scholar 

  • Haq R.U., Rehman A., Shakoori A.R.: Effect of dichromate on population and growth of various protozoa isolated from industrial effluents.Folia Microbiol. 45, 275–280 (2000).

    CAS  Google Scholar 

  • Haq R., Shakoori A.R.: Identification and characterization of plasmid born genes ofThiobacillus ferrooxidans and their implication in improvement of metal recovery operations.Pakistan J. Zool. 29, 1–6 (1997).

    CAS  Google Scholar 

  • Hefnawy M.A., Razak A.A.: Alteration of cell-wall composition ofFusarium oxysporum, by copper stress.Folia Microbiol. 43, 453–458 (1998).

    CAS  Google Scholar 

  • Higham D.P., Sadler P.J., Scawen M.D.: Cadmium resistantPseudomonas putida synthesizes novel cadmium proteins.Science 225, 1043–1046 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand C.E., Griffith J.K., Tobey R.A., Walkers R.A., Enger M.D.: Molecular mechanisms of Cd detoxification in Cd-resistant cultured cells, role of metallothioneins and other inducible factors.Rev. Toxicol. Environ. Sci. 9, 279–303 (1982).

    CAS  Google Scholar 

  • Holmes D.S.: Improved rapid techniques for screening recombinant DNA plasmid inE. coli.Biotechniques 2, 68–69 (1984).

    CAS  Google Scholar 

  • Hong Y.C., Azad H.R., Cooksey D.A.: A chromosomal locus required for copper resistance, competitive fitness and cytochromec biogenesis inPseudomonas fluorescens.Proc. Nat. Acad. Sci. USA 93, 7315–7320 (1996).

    Article  Google Scholar 

  • Inniss W.E., Ingraham J.L.: Microbial life at low temperature, mechanisms and molecular aspects, pp. 73–104 in D.J. Kushner (Ed.):Microbial Life in Extreme Environment. Academic Press, New York 1978.

    Google Scholar 

  • Jt G., Silver S.: Bacterial resistance mechanisms for heavy metals of environment concern.J. Industr. Microbiol. 14, 61–75 (1995).

    Article  Google Scholar 

  • Kim B.K., De Macario, E.C., Nolling J., Daniels L.: Isolation and characterization of copper resistant methanogen from a copper mining soil sample.Appl. Environ. Microbiol. 62, 2629–2635 (1996).

    PubMed  CAS  Google Scholar 

  • Kozdroj J.: Microbial responses to single or successive soil contamination with Cd2+ or Cu2+.Soil Biol. Biochem. 27, 1459–1465 (1995).

    Article  CAS  Google Scholar 

  • Laddaga R.A., Silver S.: Cadmium uptake inE. coli K-12.J. Bacteriol. 162, 1100–1105 (1986).

    Google Scholar 

  • Lakshami V.V., Sridhar P., Khan T.B., Polasa H.: Mixed-ligand complexes of platinumII as curing agents for pBP322 and pBR329 (Co/EI) plasmids inEscherichia coli.J. Gen. Microbiol. 134, 1977–1981 (1988).

    Google Scholar 

  • Ledin M., Pedersen K., Allard B.: Effect of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg byPseudomonas putida.Water Air Soil Pollut. 93, 367–381 (1997).

    CAS  Google Scholar 

  • Lin C., Olson B.H.: Occurrence ofcop-like copper-resistance gene among bacteria isolated from a water distribution system.Can. J. Microbiol. 41, 642–646 (1995).

    Article  CAS  Google Scholar 

  • Maniatis T., Fritsch E.F., Sambrook J.:Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.

    Google Scholar 

  • Mergeay M.: Towards an understanding of the genetics of bacterial metal resistance.Trends Biotech. 9, 17–24 (1991).

    Article  CAS  Google Scholar 

  • Morley G.F., Gadd G.M.: Sorption of toxic metals by fungi and clay minerals.Mycol. Res. 99, 1429–1438 (1995).

    CAS  Google Scholar 

  • Mullen M.D., Wolf D.C., Ferris F.G., Beveridge T.J., Flemming C.A., Baylay G.W.: Bacterial sorption of heavy metals.Appl. Environ. Microbiol. 55, 3143–3149 (1989).

    PubMed  CAS  Google Scholar 

  • Neito J.J., Ventosa A., Montero C.G., Ruiz-Berraquero F.: Toxicity of heavy metals to archaebacterial halococci.Syst. Appl. Microbiol. 11, 116–120 (1989).

    Google Scholar 

  • Nies D.H., Silver S.: Ion efflux system involved in bacterial metal resistance.J. Industr. Microbiol. 14, 186–199 (1995).

    Article  CAS  Google Scholar 

  • Ohman D.E.:Experiments in Gene Manipulation. Prentice Hall, New York 1988.

    Google Scholar 

  • Olukoya D.K., Smith S.I., Ilori M.O.: Isolation and characterization of heavy metal resistant bacteria from Lagos Lagoon.Folia Microbiol. 42, 441–444 (1997).

    CAS  Google Scholar 

  • Patterson D., Gillespie D.: Effect of elevated temperature on protein synthesis inE. coli.J. Bacteriol. 112, 117–118 (1972).

    Google Scholar 

  • Phelps P.A., Agarwal S.K., Speitel G.E., Georgiou G., Speitel G.E. Jr.: Phenotypic characterization of copper resistant mutants ofMethylosinus trichosporium.Appl. Environ. Microbiol. 58, 3701–3708 (1993).

    Google Scholar 

  • Rani D.B., Mahadevan A.: Patterns of heavy metal resistance in marinePseudomonas MRI.Indian J. Exp. Biol. 31, 682–686 (1993).

    PubMed  CAS  Google Scholar 

  • Robinson J.B., Tuovinen O.H.: Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical and genetic analysis.Microbiol. Rev. 48, 95–124 (1984).

    PubMed  CAS  Google Scholar 

  • Shakoori A.R., Tahseen S., Haq R.U.: Chromium-tolerant bacteria isolated from industrial efluents and their use in detoxication of hexavalent chromium.Folia Microbiol. 44, 50–54 (1999).

    Article  CAS  Google Scholar 

  • Silver S.: Exploiting heavy metal resistance systems in bioremediation.Res. Microbiol. 145, 61–66 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Silver S.: Bacterial resistance to toxic metal ions.Gene 179, 9–19 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Silver S.: Gene for all metals: a bacterial view of the periodic table.J. Industr. Microbiol. Biotechnol. 20, 1–12 (1998).

    Article  CAS  Google Scholar 

  • Silver S., Ji G.: Newer systems for bacterial resistance to toxic heavy metals.Environ. Health Perspect. 102, 107–113 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Silver S., Phung L.T.: Bacterial heavy metal resistance—new surprises.Ann. Rev. Microbiol. 50, 753–789 (1996).

    Article  CAS  Google Scholar 

  • Simkiss K., Watkins B.: Differences in zinc uptake between snails (Helix aspersa) from metal and bacterial polluted sites.Funct. Ecol. 5, 787–794 (1991).

    Article  Google Scholar 

  • Sundin G.W., Bender C.L.: Ecological and genetic analysis of copper and streptomycin resistance inPseudomonas syringae.Appl. Environ. Microbiol. 59, 1018–1024 (1996).

    Google Scholar 

  • Thiele D.J.:Metal Detoxification in Eukaryotic Cells. Crisp Data Base of National Institute of Health, Washington (DC) 1995.

    Google Scholar 

  • Traianovska S., Britz M.L., Bhave M.: Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from lead contaminated site.Biodegradation 8, 113–124 (1997).

    Article  Google Scholar 

  • Tsekova K.V., Marinov P.G., Tzekova A.N.: Copper accumulation byAspergillus awamori.Folia Microbiol. 45, 217–220 (2000a)

    CAS  Google Scholar 

  • Tsekova K., Dentchev D., Todorova D.: Effect of cadmium and copper on the production of citric acid byAspergillus niger.Folia Microbiol. 45, 331–334 (2000b).

    Article  CAS  Google Scholar 

  • Verma S.K., Singh S.P.: Multiple metal resistance in the cyanobacteriumNostoc muscorum.Bull Environ. Contam. Toxicol. 54, 614–619 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Vievskii A.N.: The synergistic action of quaternary ammonium derivatives and inhibitors of nitrate reduction in respect toPseudomonas aeruginosa 1.Mikrobiol. Z 56, 16–20 (1994).

    PubMed  CAS  Google Scholar 

  • Williams J.R., Morgan A.G., Rouch D.A., Brown N.L., Lee B.T.O.: Copper resistant enteric bacteria from United Kingdom and Australian piggeries.Appl. Environ. Microbiol. 59, 2531–2537 (1993).

    PubMed  CAS  Google Scholar 

  • Yang C.H., Azad H.R., Cooksey D.A.: A chromosomal locus required for copper resistance.Proc. Nat. Acad. Sci. USA 93, 7315–7320 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama H., Nakae T.: Protein C (OprC) of the outer membrane ofPseudomonas aeruginosa is a copper-regulated channel protein.Microbiology 142, 2137–2144 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakoori, A.R., Muneer, B. Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiol 47, 43–50 (2002). https://doi.org/10.1007/BF02818564

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818564

Keywords

Navigation