Folia Microbiologica

, Volume 46, Issue 3, pp 197–204 | Cite as

Anaerobic fermentation of gelatinized sago starch-derived sugars to acetone—1-butanol—Ethanol solvent byClostridium acetobutylicum

  • M. S. Madihah
  • A. B. AriffEmail author
  • M. S. Khalil
  • A. A. Suraini
  • M. I. A. Karim


A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch byClostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent,i.e. 1.5–2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for α-amylase and glucoamylase were found to be at 5.3 and 4.0–4.4, respectively. α-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0–8.0 after a 1-d incubation at 37°C. SinceC. acetobutylicum α-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, theC. acetobutylicum glucoamylase was only stable at pH 4–5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37°C.


Starch Maltose Kojic Acid Clostridium Acetobutylicum Solvent Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annous B.A., Blaschek H.P.: Regulation and localization of amylolytic enzymes inClostridium acetobutylicum ATCC 824.Appl. Environ. Microbiol. 56, 2559–2561 (1990).PubMedGoogle Scholar
  2. Ariff A.B., Webb C.: Influence of different fermentor configurations and modes of operation on glucoamylase production byAspergillus awamori.Asia Pacific J. Mol. Biol. Biotechnol. 4, 183–195 (1996).Google Scholar
  3. Barton L.L., Georgi C.E., Lineback D.R.: Effect of maltose on glucoamylase formation byAspergillus niger.J. Bacteriol. 111, 771–777 (1972).PubMedGoogle Scholar
  4. Bhella S.R., Altosaar I.: Purification and some properties of the extracellular α-amylase fromAspergillus awamori.Can. J. Microbiol. 28, 1340–1346 (1984).Google Scholar
  5. Buonocore V., Caporale C., De Rosa M., Gambacorta A.: Stable, inducible thermoacidophilic α-amylase fromBacillus acidocaldarius.J. Bacteriol. 128, 515–520 (1976).PubMedGoogle Scholar
  6. Chojecki A., Blanschek H.P.: Effect of carbohydrate source on α-amylase and glucoamylase formation byClostridium acetobutylicum SA-1.Ind. Microbiol. 1, 63–67 (1986).CrossRefGoogle Scholar
  7. Ennis B.M., Maddox I.S.: Use ofClostridium acetobutylicum P262 for production of solvents from whey permeate.Biotechnol. Lett. 7, 601–606 (1985).CrossRefGoogle Scholar
  8. Ennis B.M., Gutierrez N.A., Maddox I.S.: The acetone-butanol-ethanol fermentation: a current assessment.Proc. Biochem. 21, 131–146 (1986).Google Scholar
  9. Ensley B., Mchugh J.J., Barton L.L.: Effect of carbon sources on the formation of α-amylase and glucoamylase byClostridium acetobutylicum.J. Gen. Appl. Microbiol. 21, 51–59 (1975).Google Scholar
  10. Fond O., Matta-Ammouri G., Petitdemange H., Engasser J.M.: The role of acids in the production of acetone and butanol byClostridium acetobutylicum.Appl. Microbiol. Biotechnol. 22, 195–200 (1985).CrossRefGoogle Scholar
  11. Fond O., Engasser J.E., El-Amouri G.M., Petitdemange H.: The acetone-butanol fermentation on glucose and xylose. 1. Regulation and kinetics in batch cultures.Biotechnol. Bioeng. 28, 160–166 (1986).CrossRefPubMedGoogle Scholar
  12. Forgaty W.M., Benson C.P.: Purification and properties of thermophilic amyloglucosidase fromAspergillus niger.Appl. Microbiol. Biotechnol. 18, 271–278 (1983).CrossRefGoogle Scholar
  13. Gutierrez N.A., Maddox I.S., Schuster K.C., Swobida H., Gapes J.R.: Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using substrate of potato.Biores. Technol. 66, 263–265 (1998).CrossRefGoogle Scholar
  14. Hyun H.H., Zeikus J.G.: Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures ofClostridium thermosulfurogenes andClostridium thermohydrosulfuricum.Appl. Environ. Microbiol. 49, 1174–1181 (1985).PubMedGoogle Scholar
  15. Jones T.J., Woods D.R.: Acetone-butanol fermentation revisited.Microbiol. Rev. 20, 484–524 (1986).Google Scholar
  16. Linden I.C., Moreira A.R., Lenz T.G.: Acetone and butanol comprehensive biotechnology. The principles, application and regulations of biotechnology in industry, agriculture and medicine, pp. 915–929 in M.Y. Murray, W.B. Harvey, S. Drew, D.I.C. Wang (Eds.):The Practice of Biotechnology, Current Commodity Product, Vol. 3. Pergamon Press, London 1985.Google Scholar
  17. Long S., Jones D.T., Woods D.R.: The relationship between sporulation and solvent production inClostridium acetobutylicum P262.Biotechnol. Lett. 6, 529–534 (1984).CrossRefGoogle Scholar
  18. Maher G.G.: Inactivation of transglucosidase in enzyme preparation formAspergillus niger.Starke 20, 228–232 (1968).CrossRefGoogle Scholar
  19. Miller T.L., Wolin M.J.: A serum bottle modification of the Hungate technique for culturing obligate anaerobes.Appl. Microbiol. 27, 985–987 (1974).PubMedGoogle Scholar
  20. Ounine K., Petitdemange H., Raval G., Gay R.: Regulation and butanol inhibition ofd-xylose andd-glucose uptake inClostridium acetobutylicum.Appl. Environ. Microbiol. 49, 874–878 (1985).PubMedGoogle Scholar
  21. Paquet V., Croux C., Goma G., Soucaille P.: Purification and characterization of the extracellular α-amylase fromClostridium acetobutylicum ATCC 824.Appl. Environ. Microbiol. 57, 212–218 (1991).PubMedGoogle Scholar
  22. Rosfarizan M., Ariff A.B., Hassan M.A., Karim M.I.A.: Kojic acid production byAspergillus flavus using gelatinized and hydrolyzed sago starch as carbon sources.Folia Microbiol. 43, 459–464 (1998).CrossRefGoogle Scholar
  23. Schoutens G.H., Groot W.J.: Economic feasibility of the production ofiso-propanol-butanol-ethanol fuels from whey permeate.Proc. Biochem. 20, 117–121 (1985).Google Scholar
  24. Scott D., Hedrick L.R.: The amylase ofClostridium acetobutylicum.J. Bacteriol. 63, 795–803 (1958).Google Scholar
  25. Soni B.K., Soucaille P., Goma G.: Continuous acetone butanol fermentation: a global approach for the improvement in the solvent productivity in synthetic medium.Appl. Microbiol. Biotechnol. 25, 317–321 (1987).CrossRefGoogle Scholar
  26. Soni B.K., Kapp, Goma G., Soucaille P.: Solvent production from starch: effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium.Appl. Microbiol. Biotechnol. 37, 539–543 (1992).CrossRefGoogle Scholar
  27. Srivasta R.A.K., Mathur S.N.: Regulation of amylase biosynthesis in growing and nongrowing cells ofBacillus stearothermophilus.J. Appl. Bacteriol. 57, 147–151 (1984).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2001

Authors and Affiliations

  • M. S. Madihah
    • 1
  • A. B. Ariff
    • 1
    Email author
  • M. S. Khalil
    • 2
  • A. A. Suraini
    • 1
  • M. I. A. Karim
    • 1
  1. 1.Department of Biotechnology, Faculty of Food Science and BiotechnologyUniversiti Putra MalaysiaSerdang, SelangorMalaysia
  2. 2.Department of Chemical Engineering and Process, Faculty of EngineeringUniversiti Kebangsaan MalaysiaBangi, SelangorMalaysia

Personalised recommendations