Advertisement

Journal of Electronic Materials

, Volume 22, Issue 10, pp 1195–1198 | Cite as

Chemistry of electron doped Ln2−xCexCuO4 superconductors

  • A. Manthiram
  • Y. T. Zhu
Special Issue Paper

Abstract

The electron doped Ln2−xCexCuO4 (Ln=lanthanide) oxides have intergrowth structures consisting of superconductively active CuO2 sheets alternating with inactive (Ln, Ce)2O2 fluorite layers along the c-axis. Stabilization of such intergrowth structures requires bond length matching across the intergrowth interface. The bond length matching criterion causes a monotonic decrease in the Ce solubility limit from x=0.24 to x=0.15 as the size of Ln3+ decreased from Ln=La0.5Nd0.5 to Ln=Gd. Annealing in N2 atm of Ln2−xCexCuO4 at temperatures above 900°C creates oxygen vacancies and the number of vacancies decreases with increasing Ce content. The value of x at which a semiconductor to superconductor transition occurs in Ln2−xCexCuO4 increases with decreasing size of Ln3+ due to an increasing Madelung energy caused by a decreasing Cu−O bond length.

Key words

Bond length mismatch cerium solubility limit electron doped superconductors Ln2−xCexCuO4 superconductors oxygen content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Takano, Y. Takeda, H. Okada, M. Miyamoto and K. Kusaka,Physica C 169, 375 (1989).CrossRefGoogle Scholar
  2. 2.
    M.G. Smith, A. Manthiram, J. Zhou, J.B. Goodenough and J.T. Markert,Nature 351, 549 (1991).CrossRefGoogle Scholar
  3. 3.
    J.B. Goodenough,Supercond. Sci. Technol. 3, 26 (1990).CrossRefGoogle Scholar
  4. 4.
    J.B. Goodenough and A. Manthiram,J. Solid State Chem. 88, 115 (1990).CrossRefGoogle Scholar
  5. 5.
    R.M. Fleming, B. Batlogg, R.J. Cava and E.A. Rietman,Phys. Rev. B 35, 7191 (1987).CrossRefGoogle Scholar
  6. 6.
    Y. Tokura, H. Tagaki and S. Uchida,Nature 337, 345 (1989).CrossRefGoogle Scholar
  7. 7.
    E. Takayama-Muromachi, Y. Uchida, and K. Kato,Physica C 165, 147 (1990).CrossRefGoogle Scholar
  8. 8.
    A. Manthiram and J.B. Goodenough,J. Solid State Chem. 92, 231 (1991).CrossRefGoogle Scholar
  9. 9.
    A. Manthiram, J.S. Swinnea, Z.T. Sui, H. Steinfink and J.B. Goodenough,J. Amer. Chem. Soc. 109, 6667 (1987).CrossRefGoogle Scholar
  10. 10.
    J.B. Goodenough, J.-S. Zhou and J. Chan,Phys. Rev. B 47, 5275 (1993).CrossRefGoogle Scholar
  11. 11.
    A. Mathiram,J. Solid State Chem. 100, 383 (1992).CrossRefGoogle Scholar
  12. 12.
    T. Arima, K. Kikuchi, M. Kasuya, S. Koshihara and Y. Tokura,Phys. Rev. B 44, 917 (1991).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 1993

Authors and Affiliations

  • A. Manthiram
    • 1
  • Y. T. Zhu
    • 1
  1. 1.Center for Materials Science and Engineering, ETC 9.104The University of Texas at AustinAustin

Personalised recommendations