Folia Microbiologica

, Volume 46, Issue 6, pp 565–572 | Cite as

The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice

  • T. Hudcovic
  • R. Štěpánková
  • J. Cebra
  • H. Tlaskalová-Hogenová
Immunology Papers

Abstract

One-week dextran sulfate treatment of conventional (CV) immunodeficient (SCID) mice gave rise to acute colitis in the colon mucosa; germ-free (GF) SCID mice did not exhibit any changes in colon morphology. Dextran sulfate application to CV immunocompetent (BALB/c) mice did induce substantial changes in the colon mucosa (grade4); GF BALB/c mice showed mild changes in the colon morphology (grade1) only. GF SCID mice and CV SCID mice died during the second round of dextran sulfate treatment suffering from chronic colitis; GF BALB/c mice exhibited mild crypt distortion while CV BALB/c mice showed a complete loss of the surface epithelium (grade4), accompanied by T and B lymphocyte infiltration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosma M.J., Carroll A.M.: The SCID mouse mutant: definition, characterization and potential uses.Ann. Rev. Immunol.9, 323–350 (1991).CrossRefGoogle Scholar
  2. Bylund-Fellenius A.C., Lanström E., Axelsson L.D., Midtvedt T.: Experimental colitis is induced by dextran sulfate in normal and germ-free mice.Microb. Ecol. Health Dis.7, 207–215 (1994).CrossRefGoogle Scholar
  3. Cebra J.J., Jiang H., Šterzl J., Tlaskalová-Hogenová H.: The role of mucosal microbiota in the development and maintenance of the mucosal immune system, pp. 267–280 in L.O. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock, J.R. McGhee (Eds).Mucosal Immunology, 2nd edn. Academic Press, New York 1999.Google Scholar
  4. Cooper H.S., Murthy S.N.S., Snak R.S., Sedergran D.S.: Clinicopathologic study of dextran sulfate sodium experimental murine colitis.Lab. Invest.69, 238–249 (1993).PubMedGoogle Scholar
  5. Dieleman L.A., Ridwan B.U., Tennyson G.S., Beagley K.W., Bucy R.P., Elson C.O.: Dextran sodium sulfate-induced colitis occurs in severe combined immunodeficient mice.Gastroenterology107, 1643–1652 (1994).PubMedGoogle Scholar
  6. Duchmann R., Zeitz M.: Crohn's disease, pp. 1055–1080 in L.O. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock, J.R. McGhee (Eds):Mucosal Immunology, 2nd edn. Academic Press, New York 1999.Google Scholar
  7. Elson C.O., Cong Z., Brandwein S., Weaver C.T., McCabe R.P., Mahler M., Sundberg J.P., Leiter E.H.: Experimental models to study molecular mechanisms underlying intestinal inflammation.Ann. N.Y. Acad. Sci.17, 85–95 (1998).CrossRefGoogle Scholar
  8. Elson C.O.: The immunology of inflamatory bowel disease, pp. 97–164 in J.B. Kirsner, R.G. Shorter (Eds).Inflamatory Bowel Disease, 3rd ed. Lea & Febiger, Philadelphia (USA) 1988.Google Scholar
  9. Hans W., Schölmerich J., Gross, V., Falk W.: The role of the resident intestinal flora in acute and chronic dextran sodium sulfate induced colitis in mice.Eur. J. Gastroenterol.-Hepatol.12, 267–273 (2000).PubMedGoogle Scholar
  10. James S.P., Strober W.: Gastrointestinal disease, pp. 455–472 in D.P. Stites, A.I. Terr (Eds):Basic and Clinical Immunology. Victoria Publishing, San Francisco (USA) 1994.Google Scholar
  11. Karp L.C., Targan S.R.: Evidence for an updated hypothesis of disease pathogenesis. pp. 1047–1053 L.O. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock, J.R. McGhee (Eds):Mucosal Immunology, 2nd edn. Academic Press, New York 1999.Google Scholar
  12. Leach M.W., Davidson N.J., Fort M.M., Powrie F., Rennick D.M.: The role of IL-10 in inflammatory bowel disease of mice and men.Toxicol. Pathol.27, 123–133 (1999).PubMedGoogle Scholar
  13. Louis E., Belaiche J.: Experimental models of inflammatory bowel disease.Acta Gastroenterol Belg.57, 306–309 (1994).PubMedGoogle Scholar
  14. Ni J., Chen S.F., Hollander D.: Effects of dextran sulfate sodium on intestinal epithelial cells and intestinal lymphocytes.Gut39, 234–241 (1996).PubMedCrossRefGoogle Scholar
  15. Ohkusa T.: Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and change in intestinal microfloraJapan: J. Gastroenterol.82, 1327–1336 (1985).Google Scholar
  16. Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagi Y., Nakya R.: A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice.Gastroenterology98, 694–702 (1990).PubMedGoogle Scholar
  17. Pitcher M.C.L., Beatty E.R., Cummings J.H.: The contribution of sulfate reducing bacteria and 5-aminosalicylic acid to fecal sulfide in patients with ulcerative colitis.Gut46, 694–702 (1997).Google Scholar
  18. Podolsky D.K.: Lessons from genetic models of inflammatory bowel disease.Acta Gastroenterol. Belg.60, 163–165 (1997).PubMedGoogle Scholar
  19. Powrie F., Leach M.W.: Genetic and spontaneous models of inflammatory bowel disease in rodents: evidence for abnormalities in mucosal immune regulation.Ther. Immunol.2, 115–23 (1995).PubMedGoogle Scholar
  20. Shintani N., Nakajima T., Sugiura M., Murakami K., Nakamura K., Mayumi T.: Proliferative effect of dextran sulfate sodium (DSS)-pulsed macrophages on T cells from mice with DSS-induced colitis and inhibition of effect by IgG.Scand. J. Immunol.46, 581–586 (1997).PubMedCrossRefGoogle Scholar
  21. Simpson E.J., Chapman M.A.S., Dawson J., Berry D., MacDonald I.A., Cole A.In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis.Gut46, 73–77 (2000)PubMedCrossRefGoogle Scholar
  22. Strober W., James S.: Ulcerative colitis, pp. 458–459 in D.P. Stites, A.I. Terr (Eds):Basic and Clinical Immunology. Victoria Publishing, San Francisco (USA) 1994.Google Scholar
  23. Strober W., Ehrhardt R.O.: Chronic intestinal inflammation: an unexpected outcome in cytokine or T well receptor mutant mice.Cell78, 203–295 (1993).CrossRefGoogle Scholar
  24. Štěpánková, R., Šinkora J., Hudcovic T., Kozáková H., Tlaskalová-Hogenová H.: Differences in development of lymphocyte subpopulations from gut-associated lymphatic tissue (GALT) of germ-free and conventional rats: effect of aging.Folia Microbiol.43, 531–534 (1998).CrossRefGoogle Scholar
  25. Tlaskalová-Hogenová H., Štěpánková R., Tučková L., Farré M.A., Funda D.P., Verdú E.F., Šinkora J., Hudcovic T., Řeháková Z., Cukrowska B., Kozáková H., Prokešová L.: Autoimmunity, immunodeficiency and mucosal infections: chronic intestinal inflammation as a sensitive indicator of immunoregulatory defects in response to normal luminal microflora.Folia Microbiol.43, 545–550 (1998).Google Scholar
  26. Tlaskalová-Hogenová H., Šterzl J., Štěpánková R., Dlabač V., Větvička V., Rossmann P., Mandel L., Rejnek J.: Development of immunological capacity under germ-free and conventional conditions.Ann. N.Y. Acad. Sci.409, 96–113 (1983).PubMedCrossRefGoogle Scholar
  27. Tlaskalová-Hogenová H.: Gnotobiology as a tool, pp. 1524–1527 in I. Lefkovits (Ed.):Manual of Immunological Methods. Academic Press, New York-London 1997.Google Scholar
  28. Tlakalová-Hogenová H., Štěpánková R., Tučková L., Cukrowska B., Hudcovic T., Bendjelloul F., Malý P., Jirkovská M., Mandys V., Kofroñová O., Verdú E.F., Berčik P., Farré M., Prokešová L., Funda D.P., Kozáková H., Michetti P., Cebra J.: Effector mechanisms in intestinal immunity and inflammation, pp. 74–83 in J. Emmrich, S. Liebe, E.F. Strange (Eds.):Innovative Concepts in IBD. Kluwer Academic Publishers, Dordrecht-Boston-London 1999.Google Scholar
  29. Trinchieri G., Perusia B.: Immune interferon: a pleiotropic lymphokine with multiple effects.Immunol. Today6, 131–136 (1985).CrossRefGoogle Scholar
  30. Verdú, E.F., Berčik P., Cukrowska B., Farré M., Bonson R.H., Saraga E., Lum A., Corthesy I., Tlaskalová H.: Oral administration antigens from intestinal flora an aerobic bacteria reduces the severity of experimental acute colitis in BALB/c mice.Clin. Exp. Immunol.120, 46–50 (2000).PubMedCrossRefGoogle Scholar
  31. Watt, J., Marcus R.: Carrageenan-induced ulceration of the large intestine in the guinea pig.Gut12, 164–171 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  • T. Hudcovic
    • 1
  • R. Štěpánková
    • 1
  • J. Cebra
    • 2
  • H. Tlaskalová-Hogenová
    • 2
  1. 1.Department of Immunology and Gnotobiology, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicNový HrádekCzechia
  2. 2.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations