Folia Microbiologica

, Volume 46, Issue 6, pp 549–554 | Cite as

Effects of pH on the growth rate, motility and photosynthesis inEuglena gracilis

Papers

Abstract

The influence of pH 3–10 on the growth, motility and photosynthesis inEuglena gracilis was demonstrated during a 7-d cultivation. The cells did not survive at pH<4 and >8, highest growth rate being detected at pH 7. Motility followed a similar patterns as growth rate. Photosynthetic response curves were shown to be of the same type over the whole pH range. High respiration was characteristic for cells grown at pH 5 and 6, the lowest one at 7. At high and also at low pH more active respiration was found which can be considered as a protective response on proton stress. Respiration was not completely inhibited with potassium cyanide. Photosynthesis was the most effective at pH 6; lower and higher pH decreased photosynthetic efficiency. pH affected more the growth rate than the photosynthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal S.C., Singh V.: Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure.Folia Microbiol.45, 439–446 (2000).CrossRefGoogle Scholar
  2. Axelsson L., Mercado J.M., Figueroa F.L.: Utilization of HCO3 at high pH by the brown macroalgaLaminaria saccharina.Eur. J. Phycol.35, 53–59 (2000).Google Scholar
  3. Backor M., Hudak J., Backorova M.: Comparison between growth responses of autotrophic and heterotrophic populations of lichen photobiontTrebouxia irregularis (Chlorophyta) on Cu, Hg and Cd chlorides treatment.Phytol. Ann.-Rei. Bot.38, 239–250 (1998).Google Scholar
  4. Bannister T.: A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer.Limnol. Oceanogr.19, 13–30 (1974).CrossRefGoogle Scholar
  5. Buetow D.E.: The mitochondrion, pp. 247–314 in D.E. Buetow (Ed.):The Biology of Euglena. Academic Press, New York 1989.Google Scholar
  6. Campbell P.G.C., Stokes P.M.: Acidification and toxicity of metals to aquatic biota.Can. J. Fish Aquat. Sci.42, 2034–2049 (1985).Google Scholar
  7. Checcucci A., Colombetti G., Ferrara R., Lenci F.: Action spectra for photoaccumulation of green and colorlessEuglena: evidence for identification of receptor pigments.Photochem. Photobiol.23, 51–54 (1976).PubMedCrossRefGoogle Scholar
  8. Chen C.Y., Durbin E.G.: Effect of pH on the growth and carbon uptake of marine phytoplankton.Mar. Ecol. Progr. Ser.109, 83–94 (1994).CrossRefGoogle Scholar
  9. Danilov R.A., Ekelund N.G.A.: Influence of waste water from the paper industry and UV-B radiation on the photosynthetic efficiency ofEuglena gracilis.J. Appl. Phycol.11, 157–163 (1999).CrossRefGoogle Scholar
  10. Danilov R.A., Ekelund N.G.A.: Effects of increasing doses of UV-B radiation on photosynthesis and motility inChlamydomonas reinhardtii.Folia Microbiol.45, 41–44 (2000).CrossRefGoogle Scholar
  11. Franklin N.M., Stauber J.L., Markich S.J., Lim R.P.: pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.).Aquat. Toxicol.48, 275–289 (2000).PubMedCrossRefGoogle Scholar
  12. Genter R.B., Amyot D.J.: Fresh-water benthic algal population and community changes due to acidity and aluminium-acid mixtures in artificial streams.Environ. Toxicol. Chem.13, 369–380 (1994).CrossRefGoogle Scholar
  13. Granbom M., Pedersen M.: Carbon acquisition strategies of the red algaEucheuma denticulatum.Hydrobiologia399, 349–354 (1999).CrossRefGoogle Scholar
  14. Häder D.-P., Lebert M., Tahedl H., Richter P.: The Erlanger flagellate test (EFT): photosynthetic flagellates in biological dosimeters.J. Photochem. Photobiol.40, 23–28 (1997).CrossRefGoogle Scholar
  15. Herrmann J., Degerman E., Gerhardt A., Johansson C., Lingdell P.-E., Muniz I.P.: Acid-stress effects on stream biologAmbio22, 298–307 (1993).Google Scholar
  16. Israel A., Katz S., Dubinsky Z., Merrill J.E., Friedlander M.: Photosynthetic inorganic carbon utilization and growth ofPorphyra linearis (Rhodophyta).J. Appl. Phycol.11, 447–453 (1999).CrossRefGoogle Scholar
  17. Kapfer M.: Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany).Water Air Soil Pollut.108, 331–340 (1998).CrossRefGoogle Scholar
  18. Korneva L.G.: Impact of acidification on structural organization of phytoplankton community in the forest lakes of the North-Western Russia.Water Sci. Tech.33, 291–296 (1996).CrossRefGoogle Scholar
  19. Larsson C., Axelsson L.: Bicarbonate uptake and utilization in marine macroalgae.Eur. J. Phycol.34, 79–86 (1999).CrossRefGoogle Scholar
  20. Mayo A.W.: Effects of temperature and pH on the kinetic growth of unialgaChlorella vulgaris cultures containing bacteria.Water Environ. Res.69, 64–72 (1997).CrossRefGoogle Scholar
  21. Mercado J.M., Niell F.X., Figueroa F.L.: Regulation of mechanism for HCO3 use by the inorganic carbon level inPorphyra leucosticaThur inLe Jolis (Rhodophyta).Planta201, 319–325 (1997).CrossRefPubMedGoogle Scholar
  22. Nalewajko C., Colman B., Olaveson M.: Effects of pH on growth, photosynthesis, respiration, and copper tolerance of threeScenedesmus strains.Environ. Exp. Bot.37, 153–160 (1997).CrossRefGoogle Scholar
  23. Nilsson A.N., Johansson A.: A comparative study of the benthos of limed and not-limed streams: effects of different liming methods.Inform. Inst. Freshw. Res. (Drottningholm)11, 1–56 (1985).Google Scholar
  24. Ögren E., Evans J.R.: Photosynthetic light-response curves.Planta189, 182–190 (1993).CrossRefGoogle Scholar
  25. Peterson H.G., Healey F.P., Wagemann R.: Metal toxicity to algae: a highly pH dependent phenomenon.Can. J. Fish Aquat Sci.41, 974–979 (1984).CrossRefGoogle Scholar
  26. Platt T., Jassby A.: The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton.J. Phycol.12, 421–430 (1976).Google Scholar
  27. Porst M., Lebert M., Häder D.-P.: Long-term cultivation of the flagellateEuglena gracilis.Micrograv. Sci. Technol.10, 166–169 (1997).Google Scholar
  28. Poskuta J.W., Parys E., Romanowska E.: Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth ofChlorella pyrenoidosa. Protective role of dark respiration.Acta Physiol. Plant.18, 165–171 (1996).Google Scholar
  29. Raven J.A.: Putting the C in phycology.Eur. J. Phycol.32, 319–333 (1997).CrossRefGoogle Scholar
  30. Tubak S., Olson S., McFeters G.: Comparison of algae assay systems for detecting waterborne herbicides and metals.Water Res.20, 91–96 (1986).CrossRefGoogle Scholar
  31. Twist H., Edwards A.C., Codd G.A.: Algal growth responses to waters of contrasting tributaries of the river Dee, North-East Scotland.Water Res.32, 2471–2479 (1998).CrossRefGoogle Scholar
  32. Visviki I., Santikul D.: The pH tolerance ofChlamydomonas applanata (Volvocales, Chlorophyta).Arch. Environ. Contam. Toxicol.38, 147–151 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  1. 1.Department of Natural and Environmental SciencesMid Sweden UniversityHärnösandSweden

Personalised recommendations