Skip to main content
Log in

Control of gene expression by FNR-like proteins in facultatively anaerobic bacteria

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Facultatively anaerobic bacteria are able to adapt to many different growth conditions. Their capability to change their metabolism optimally is often ensured by FNR-like proteins. The FNR protein ofEscherichia coli functions as the main regulator during the aerobic-to-anaerobic switch. Low oxygen tensions activate this protein which is expressed constitutively and is inactive under aerobic conditions. The active form is dimeric and contains a [4Fe−4S]2+ cluster. The direct dissociation of the cluster to the [2Fe−2S]2+ cluster by the effect of oxygen leads to destabilization of the FNR dimer and to loss of its activity. The active FNR induces the expression of many anaerobic genes; the set comprises over 100 of controlled genes. Many other bacteria contain one or more FNR analogues. All these proteins form the FNR family of regulatory proteins. Properties of these proteins are very distinct, sometimes even among representatives of different strains of the same bacterial species. FNR-like proteins together with other regulators (e.g., two-component system ArcBA, nitrate-sensing system NarXL,etc.) control a complicated network of modulons that is characteristic for every species or even strain and enables fine tuning of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ArcA:

aerobic respiratory control protein

ANR:

anaerobic arginine deaminase and nitrate reductase regulator

CAP:

catabolite activator protein

DNR:

dissimilatory nitrate respiration regulator

FNR:

fumarate and nitrate reduction regulator

IHF:

integration host factor

NarR:

nitrate reductase-operon regulator

NarXL:

system of sensor for nitrate (and/or nitrite) NarX and NarL regulator

NNR:

nitrite and nitric oxide reductases regulator

References

  • Anjum M.F., Green J., Guest J.R.: YieL, the third member of the CRP-FNR family inEscherichia coli.Microbiology 146, 3157–3170 (2000).

    PubMed  CAS  Google Scholar 

  • Anthamatten D., Scherb B., Hennecke H.: Characterization of afixLJ-regulatedBradyrhizobium japonicum gene sharing similarity with theEscherichia coli fnr andRhizobium meliloti fixK genes.J. Bacteriol. 174, 2111–2120 (1992).

    PubMed  CAS  Google Scholar 

  • Arai H., Igarashi Y., Kodama T.: Expression of thenir andnor genes for denitrification ofPseudomonas aeruginosa requires a novel CRP-FNR-related transcriptional regulator, DNR, in addition to ANR.FEBS Lett. 371, 73–76 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Arai H., Kodama T., Igarashi Y.: Cascade regulation of the two CRP-FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes inPseudomonas aeruginosa.Mol. Microbiol. 25, 1141–1148 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bates D.M., Lazazzera B.A., Kiley P.J.: Characterization of FNR* mutant proteins indicates two distinct mechanisms for altering oxygen regulation of theEscherichia coli transcription factor FNR.J. Bacteriol. 177, 3972–3978 (1995).

    PubMed  CAS  Google Scholar 

  • Bates D.M., Popescu C.V., Khoroshilova N., Vogt K., Beinert H., Münck E., Kiley P.J.: Substitution of leucine 28 with histidine in theEscherichia coli transcription factor FNR results in increased stability of the [4Fe−4S](2+) cluster to oxygen.J. Biol. Chem. 275, 6234–6240 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bell A.I., Gaston K.L., Cole J.A., Busby S.J.: Cloning of binding sequences for theEscherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP.Nucl. Acids Res. 17, 3865–3874 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Cebolla A., Palomares A.J.: Genetic regulation of nitrogen fixation inRhizobium meliloti.Microbiologia 10, 371–384 (1994).

    PubMed  CAS  Google Scholar 

  • Cruz Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P.: Anaerobic transcription activation inBacillus subtilis: identification of distinct FNR-dependent and-independent regulatory mechanisms.EMBO J. 14, 5984–5994 (1995).

    PubMed  CAS  Google Scholar 

  • Cuypers H., Zumft W.G.: Anaerobic control of denitrification inPseudomonas stutzeri escapes mutagenesis of anfnr-like gene.J. Bacteriol. 175, 7236–7246 (1993).

    PubMed  CAS  Google Scholar 

  • De Gier J.W., Schepper M., Reijnders W.N., van Dyck S.J., Slotboom D.J., Warne A., Saraste M., Krab K., Finel M., Stouthamer A.H., Van Spanning R.J., Van der Oost J.: Structural and functional analysis ofaa 3-type andcbb 3-type cytochrome-c oxidases ofParacoccus denitrificans reveals significant differences in proton-pump design.Mol. Microbiol. 20, 1247–1260 (1996).

    Article  PubMed  Google Scholar 

  • Eiglmeier K., Honore N., Iuchi S., Lin E.C., Cole S.T.: Molecular genetic analysis of FNR-dependent promoters.Mol. Microbiol. 3, 869–878 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Gostick D.O., Green J., Irvine A.S., Gasson M.J., Guest J.R.: A novel regulatory switch mediated by the FNR-like protein ofLactobacillus casei.Microbiology 144, 705–717 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Green J., Guest J.R.: Regulation of transcription at thendh promoter ofEscherichia coli by FNR and novel factors.Mol. Microbiol. 12, 433–444 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Green J., Sharrocks A.D., Green B., Geisow M., Guest J.R.: Properties of FNR proteins substituted at each of the five cysteine residues.Mol. Microbiol. 8, 61–68 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Guest J.R., Green J., Irvine A.S., Spiro S.: The FNR-modulon and FNR-regulated gene expression, pp. 317–342 in E.C. Lin, A. Lynch (Eds):Regulation of Gene Expression in Escherichia coli. R.G. Landes, Austin (TX) 1996.

    Google Scholar 

  • Gutierrez D., Hernando Y., Palacios J.M., Imperial J., Ruiz-Argueso T.: FnrN controls symbiotic nitrogen fixation and hydrogenase activities inRhizobium leguminosarum bv.viciae UPM791.J. Bacteriol. 179, 5264–5270 (1997).

    PubMed  CAS  Google Scholar 

  • Härtig E., Schiek U., Vollack K.U., Zumft W.G.: Nitrate and nitrite control of respiratory nitrate reduction in denitrifyingPseudomonas stutzeri by a two-component regulatory system homologous to NarXL ofEscherichia coli.J. Bacteriol. 181, 3658–3665 (1999).

    PubMed  Google Scholar 

  • Hasegawa N., Arai H., Igarashi Y.: Activation of a consensus FNR-dependent promoter by DNR ofPseudomonas aeruginosa in response to nitrite.FEMS Microbiol. Lett.,166, 213–217 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S., Lin E.C.C.: Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes, pp. 223–231 in J.A. Hoch, T.J. Silhavy (Eds.):Two-Component Signal Transduction. American Society for Microbiology, Washington (DC) 1995.

    Google Scholar 

  • Khoroshilova N., Beinert H., Kiley P.J.: Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding.Proc. Nat. Acad. Sci. USA 92, 2499–2503 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Khoroshilova N., Popescu C., Münck E., Beinert H., Kiley P.J.: Iron-sulfur cluster disassembly in the FNR protein ofEscherichia coli by O2: [4Fe−4S] to [2Fe−2S] conversion with loss of biological activity.Proc. Nat. Acad. Sci. USA 94, 6087–6092 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kiley P.J., Reznikoff W.S.: Fnr mutants that activate gene expression in the presence of oxygen.J. Bacteriol. 173, 16–22 (1991).

    PubMed  CAS  Google Scholar 

  • Kučera I., Maťchová I., Spiro S.: Respiratory inhibitors activate and Fnr-like regulatory protein inParacoccus denitrificans: implications for the regulation of the denitrification pathway.Biochem. Mol. Biol. Internat. 32, 245–250 (1994).

    Google Scholar 

  • Lambden P.R., Guest J.R.: Mutants ofEscherichia coli K12 unable to use fumarate as an anaerobic electron acceptor.J. Gen. Microbiol. 97, 145–160 (1976).

    PubMed  CAS  Google Scholar 

  • Lazazzera B.A., Beinert H., Khoroshilova N., Kennedy M.C., Kiley P.J.: DNA binding and dimerization of the Fe−S-containing FNR protein fromEscherichia coli are regulated by oxygen.J. Biol. Chem. 271, 2762–2768 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Nellen-Anthamatten D., Rossi P., Preisig O., Kullik I., Babst M., Fischer H.M., Hennecke H.:Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels.J. Bacteriol. 180, 5251–5255 (1998).

    PubMed  CAS  Google Scholar 

  • Popescu C.V., Bates D.M., Beinert H., Münck E., Kiley P.J.: Mössbauer spectroscopy as a tool for the study of activation-inactivation of the transcription regulator FNR in whole cells ofEscherichia coli.Proc. Nat. Acad. Sci. USA 95, 13431–13435 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rompf A., Hungerer C., Hoffmann T., Lindenmeyer M., Romling U., Gross U., Doss M.O., Arai H., Igarashi Y., Jahn D.: Regulation ofPseudomonas aeruginosa hemF andhemN by the dual action of the redox response regulators Anr and Dnr.Mol. Microbiol. 29, 985–997 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sharrocks A.D., Green J., Guest J.R.: FNR activates and represses transcriptionin vitro.Proc. Roy. Soc. London B 245, 219–226 (1991).

    Article  CAS  Google Scholar 

  • Sharrocks A.D., Green J., Guest J.R.:In vivo andin vitro mutants of FNR the anerobic transcriptional regulator ofE. coli.FEBS Lett. 270, 119–122 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Spiro S., Gaston K.L., Bell A.I., Roberts R.E., Busby S.J., Guest J.R.: Interconversion of the DNA-binding specificities of two related transcription regulators, CRP and FNR.Mol. Microbiol. 4, 1831–1838 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Spiro S.: An FNR-dependent promoter fromEscherichia coli is active and anaerobically inducible inParacoccus denitrificans.FEMS Microbiol. Lett. 77, 145–148 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Stewart V.: Dual interacting two-component regulatory systems mediate nitrate- and nitrite-regulated gene expression inEscherichia coli.Res. Microbiol. 145, 450–454 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Storz G., Imlay J.A.: Oxidative stress.Curr. Opin. Microbiol. 2, 188–194 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Strauch K.L., Lenk J.B., Gamble B.L., Miller C.G.: Oxygen regulation inSalmonella typhimurium.J. Bacteriol. 161, 673–680 (1985).

    PubMed  CAS  Google Scholar 

  • Takahashi K., Hattori T., Nakanishi T., Nohno T., Fujita N., Ishihama A., Taniguchi S.: Repression ofin vitro transcription of theEscherichia coli fnr andnarX genes by FNR protein.FEBS Lett. 340, 59–64 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Unden G., Becker S., Bongaerts J., Holighaus G., Schirawski J., Six S.: O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria.Arch. Microbiol. 164, 81–90 (1995).

    PubMed  CAS  Google Scholar 

  • Unden G., Duchêne A.: On the role of cyclic AMP and the Fnr protein inEscherichia coli growing anaerobically.Arch. Microbiol. 147, 195–200 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Unden G., Trageser M., Duchêne A.: Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes inEscherichia coli.Mol. Microbiol. 4, 315–319 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Van Spanning R.J., De Boer A.P., Reijnders W.N., Spiro S., Westerhoff H.V., Stouthamer A.H., Van der Oost J.: Nitrite and nitric oxide reduction inParacoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators.FEBS Lett. 360, 151–154 (1995).

    Article  PubMed  Google Scholar 

  • Van Spanning R.J., De Boer A.P., Reijnders W.N., Westerhoff H.V., Stouthamer A.H., Van der Oost J.: FnrP and NNR ofParacoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation.Mol. Microbiol. 23, 893–907 (1997).

    Article  PubMed  Google Scholar 

  • Vollack K.U., Härtig E., Körner H., Zumft W.G.: Multiple transcription factors of the FNR family in denitrifyingPseudomonas stutzeri: characterization of fourfnr-like genes, regulatory responses and cognate metabolic processes.Mol. Microbiol. 31, 1681–1694 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Weber I.T., Steitz T.A.: Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution.J. Mol. Biol. 198, 311–326 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Winteler H.V., Haas D.: The homologous regulators ANR ofPseudomonas aeruginosa and FNR ofEscherichia coli have overlapping but distinct specificities for anaerobically inducible promoters.Microbiology 142, 685–693 (1996).

    PubMed  CAS  Google Scholar 

  • Wood N.J., Alizadeh T., Bennett S., Pearce J., Ferguson S.J., Richardson D.J., Moir J.W.: Maximal expression of membranebound nitrate reductase inParacoccus is induced by nitratevia a third FNR-like regulator named NarR.J. Bacteriol. 183, 3606–3613 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ye R.W., Haas D., Ka J.O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J.M.: Anaerobic activation of the entire denitrification pathway inPseudomonas aeruginosa, requires Anr, an analog of Fnr.J. Bacteriol. 177, 3606–3609 (1995).

    PubMed  CAS  Google Scholar 

  • Zeilstra-Ryalls J.H., Kaplan S.: Aerobic and anaerobic regulation inRhodobacter sphaeroides 2.4.1: the role of thefnrL gene.J. Bacteriol. 177, 6422–6431 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazoch, J., Kučera, I. Control of gene expression by FNR-like proteins in facultatively anaerobic bacteria. Folia Microbiol 47, 95–103 (2002). https://doi.org/10.1007/BF02817665

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817665

Keywords