Skip to main content
Log in

Observation of indium-vacancy and indium-hydrogen interactions in Hg1−xCdxTe

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have used a nuclear hyperfine technique, perturbed γγ angular correlation (PAC), to study the interactions between111In and native defects and impurities in Hg1−xCdxTe. The PAC technique uses the quadrupole interaction of111In with local electric field gradients to characterize the local environment of this donor dopant. We observed that when In was diffused into a bulk or thin film sample of Hg1−xCdxTe (x=0.21 and x=0.3) at 350°C and the sample was slow cooled, the In occupied sites with near-cubic symmetry, presumably the substitutional metal site. However, when the sample was quenched, a fraction of the In was incorporated into defects characterized by quadrupole interaction strengthsv Q1 andv Q2 and asymmetries of ν12=0.08. These defects are attributed to the trapping of a metal vacancy at a next-nearest neighbor site to the In atom. The introduction of hydrogen by boiling the samples in distilled water for >4h eliminated the previously observed PAC signals and created defects characterized byv Q3=35 MHz, ν3 <0.1 andv Q4=MHz, ν4 <0.1. These defects are attributed to the decoration of the In-VHg complex by a hydrogen atom. Hall effect measurements showed that hydrogenation increased the hole concentration in p-type quenched samples and even converted n-type indium-doped samples to p-type. A possible model for hydrogen incorporation which includes self-compensation by vacancy creation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Vydyanath,J. Electrochem. Soc. 128, 2619 (1981).

    Article  CAS  Google Scholar 

  2. V.I. Ivanov-Omskii, K.E. Mironov, K.D. Mynbaev and V.V. Bogoboyaschii,Sov. Phys. Semicond. 25, 857 (1991).

    Google Scholar 

  3. A.I. Elizarov, V.V. Bogoboyaschi and N.N. Berchenko,Sov. Phys. Semicond. 24, 278 (1990).

    Google Scholar 

  4. C. Gely, C. Corbel and R. Triboulet,J. Phys: Condens. Matter 2, 4763 (1990).

    Article  CAS  Google Scholar 

  5. Y. Marfaing,J. Vac. Sci. Technol. B 10, 1444 (1992).

    Article  CAS  Google Scholar 

  6. C. Uzan-Saguy, D. Lazer and R. Kalish,J. Cryst. Growth 101, 864 (1990).

    Article  CAS  Google Scholar 

  7. V.I. Ivanov-Omskii, K.E. Mironov, K.D. Mynbaev and V.V. Bogoboyaschii,Sov. Phys. Semicond. 25, 857 (1991).

    Google Scholar 

  8. M. Boukerche, J. Reno, I.K. Sou, C. Hsu and J.P. Faurie,Appl. Phys. Lett. 48, 1733 (1986).

    Article  CAS  Google Scholar 

  9. L. Svob, Y. Marfaing, F. Dejonqueres and R. Druilhe,Physica B 170, 550 (1991).

    Article  CAS  Google Scholar 

  10. M.A. Foad, A.P. Smart, M. Watt, C.M. Sotomayor Torres and C.D.W. Wilkinson,Electron. Lett. 27, 73 (1991).

    Article  CAS  Google Scholar 

  11. L. Svob, A. Heurtel and Y. Marfaing,J. Cryst. Growth 86, 815 (1988).

    Article  CAS  Google Scholar 

  12. A.I. Evstigneev, V.F. Kuleshov, G.A. Lubochkova, M.V. Pashkovskii, E.B. Yakimov and N.A. Yarykin,Sov. Phys. Semicond. 19, 562 (1985).

    Google Scholar 

  13. Y.F. Chen and W.S. Chen,Appl. Phys. Lett. 59, 703 (1991).

    Article  CAS  Google Scholar 

  14. Th. Wichert and E. Recknagel,Microscopic Methods in Metals, Vol. 40 ofTopics in Current Physics, ed. U. Gonser (Springer, Berlin, 1986), p. 317.

    Google Scholar 

  15. R. Kalish, M. Deicher and G. Schatz,J. Appl. Phys. 53, 4793 (1982).

    Article  CAS  Google Scholar 

  16. J.C. Austin, M.L. Swanson, W.C. Hughes, C.T. Kao, L.M. Slifkin, H.C. Hofsass and E.C. Frey,Phys. Rev. B 42, 7699 (1990).

    Article  CAS  Google Scholar 

  17. Th. Wichert, H. Skudlik, M. Deicher, G. Grubel, R. Keller, E. Recknagel and L. Song,Phys. Rev. Lett. 59, 2087 (1987).

    Article  CAS  Google Scholar 

  18. D. Shaw,Phys. Status Solidi (a) 89, 173 (1985).

    Article  CAS  Google Scholar 

  19. W.C. Hughes, M.L. Swanson and J.C. Austin,Appl. Phys. Lett. 59, 938 (1991).

    Article  CAS  Google Scholar 

  20. Thomas Wichert, Thomas Krings and Herbet Wolf, to be published inPhysica B (1993).

  21. W.C. Hughes, M.L. Swanson and J.C. Austin,Nucl. Instr. and Meth. B63, 244 (1992).

    Article  Google Scholar 

  22. S.M. Myers, S.T. Picraux and R.E. Stoltz,J. Appl. Phys. 50, 5710 (1979).

    Article  CAS  Google Scholar 

  23. L. Svob and Y. Marfaing,Mat. Sci. Forum 65–66, 181 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, W.C., Swanson, M.L. & Austin, J.C. Observation of indium-vacancy and indium-hydrogen interactions in Hg1−xCdxTe. J. Electron. Mater. 22, 1011–1016 (1993). https://doi.org/10.1007/BF02817518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817518

Key words

Navigation