Skip to main content
Log in

Heavily accumulated surfaces of mercury cadmium telluride detectors: Theory and experiment

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Some processes used to passivate n-type mercury cadmium telluride photoconductive infrared detectors produce electron accumulation layers at the surfaces, which result in 2D electron gases. The dispersion relations for the electric subbands that occur in these layers have been calculated from first principles. Poisson's equation for the built-in potential and Schroedinger's equation for the eigenstates have been solved self-consistently. The cyclotron effective masses and Fermi energies have been computed for each subband density for 12 total densities between 0.1 to 5.0×1012 cm−2. The agreement with Shubnikov-de Haas measurements is very good at lower densities with possible improvement if band-gap narrowing effects were to be included. At higher densities, larger differences occur. The simple 2D description is shown to break down as the density increases because the wave functions of the conduction and valence bands cannot be well separated by the narrow band gap of long-wavelength detectors. These results provide a basis for characterizing the passivation processes, which greatly affect device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nemirovsky and G. Bahir,J. Vac. Sci. Technol. A7, 450 (1989).

    Google Scholar 

  2. Y. Nemirovsky and I. Kidron,Solid-State Electron. 22, 831 (1979).

    Article  CAS  Google Scholar 

  3. R.J. Nicholas, F. Nasir and J. Singleton,J. Cryst. Growth 86, 656 (1988).

    Article  CAS  Google Scholar 

  4. W. Zawadzki,J. Phys. C 16, 228 (1983).

    Article  Google Scholar 

  5. Y. Takada,J. Phys. Soc. Jpn. 50, 1998 (1981).

    Article  CAS  Google Scholar 

  6. G. Nachtwei, P. Schulze, G. Gobsch, G. Paasch, W. Kraak, H. Kruger, and R. Herrmann,Phys. Status Solid b 148, 349 (1988).

    Article  CAS  Google Scholar 

  7. I. Nachev,Semicond. Sci. Technol. 3, 29 (1988).

    Article  CAS  Google Scholar 

  8. G. Trankle, E. Lach, A. Forchel, C. Ell, H. Haug, G. Weimann, G. Griffiths, H. Kroemer, and S. Subbanna,J. de Phys. Coll. C5, 48, 385 (1987).

    Google Scholar 

  9. E. Kane,J. Phys. Chem. Solids, 1, 249 (1957).

    Article  Google Scholar 

  10. J. Sune, P. Olivo and B. Ricco,J. Appl. Phys. 70, 337 (1991).

    Article  Google Scholar 

  11. S. Yamada, H. Asai and Y. Kawarnura,J. Appl. Phys. 72, 569 (1992).

    Article  CAS  Google Scholar 

  12. D.G. Seiler, G.B. Ward, R.J. Justice, R.J. Koestner, M.W. Goodwin, M.A. Kinch and J.R. Meyer,J. Appl. Phys. 66, 303 (1989).

    Article  CAS  Google Scholar 

  13. D.G. Seiler, J.R. Lowney, C.L. Littler and M.R. Loloee,J. Vac. Sci. Technol. A8, 1237 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowney, J.R., Seiler, D.G., Thurber, W.R. et al. Heavily accumulated surfaces of mercury cadmium telluride detectors: Theory and experiment. J. Electron. Mater. 22, 985–991 (1993). https://doi.org/10.1007/BF02817514

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817514

Key words

Navigation