Skip to main content
Log in

Use of sugarcane bagasse pith as solid substrate forP. chrysosporium growth

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Phanerochœte chrysosporium strain H-298 grown on sugarcane bagasse pith, a lignocellulosic residue, is proposed as a bioremediation agent for aromatic contaminated soils. To investigate the use of pith for the development of a fungal inoculum, the effect of culture conditions on fungus survival and microbial respiration under solid fermentation were studied. Microbial respiration, estimated from the CO2 evolution rates, was maintained relatively high at low aeration conditions. High respiration occurred in cultures with 2,2-dimethylsuccinate added and without buffers, but not in those with acetate, succinate and phosphate buffers. It was observed that the culture was autobuffered at pH 4.5, due to acetic acid release, and that moisture content increased from 60 to 70%; these conditions were appropriate for fungal cultivation. CO2 evolution rates and fluorescence analysis showed that fungal survival was maintained through 18 d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agosin E., Odier E.: Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi.Appl. Microbiol. Biotechnol. 21, 397–403 (1985).

    Article  CAS  Google Scholar 

  • Boominathan K., Reddy C.A.: Fungal degradation of lignin: biotechnological applications, pp. 763–782 inHandbook of Applied Mycology, Vol. 4 (D.K. Arora, R.P. Elander, K.G. Mukerji, Eds). Marcel Dekker, New York 1992.

    Google Scholar 

  • Bumpus J.A.: White rot fungi and their potential use in soil bioremediation process, inSoil Biochemistry (J.-M. Bollac, Ed.). Marcel Dekker, New York-Basel-Hong Kong 1993.

    Google Scholar 

  • Field J.A., Jong E., Feijoo-Costa G., De-Bont J.A.M.: Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics.TIBTECH 11, 44–49 (1993).

    CAS  Google Scholar 

  • Kirk T.K., Tien M., Kersten P.J.: Lignin peroxidase from fungi:Phanerochœte chrysosporium.Methods Enzymol. 188, 159–171 (1990).

    Article  CAS  Google Scholar 

  • Klomp E., Durán De-Bazua C.: Tecnologías más limpias, un acercamiento al mejoramiento de la productividad y a la protección del ambiente para ingenios azucareros, mexicanos. Universidad Nacional Autónoma de México/United Nations Industrial Development Organization 1995.

  • Lang E., Nerud F., Novotná E., Zadrazil F., Martens R.: Production of ligninolytic exoenzymes and14C-pyrene mineralization byPleurotus sp. in lignocellulose substrate.Folia Microbiol. 41, 489–493 (1996).

    Article  CAS  Google Scholar 

  • Mitchel D.A.: Biomass determination in solid-state fermentation, pp. 53–63 inSolid Substrate Cultivation (H.W. Doelle, D.A. Mitchel, Rolz C.E., Eds.). Elsevier Sci. Publ., London-New York 1992.

    Google Scholar 

  • Mitchel D.A., Lonsane B.K.: Definition characteristics and potential, pp. 1–10 inSolid Substrate Cultivation (H.W. Doelle, D.A. Mitchel, Rolz C.E., Eds). Elsevier Sci. Publ., London-New York 1992.

    Google Scholar 

  • Morgan P., Cooper C.J., Battersby N.S., Lee S.A., Lewis S.T., Machin T.M., Graham S.C., Watkinson R.J.: Automated image analysis method to determine fungal biomass in soils and on solid matrices.Soil Biol. Biochem. 23, 609–616 (1991).

    Article  Google Scholar 

  • Pandey A.: Recent process development in solid-state fermentation.Process Biochem. 27, 109–117 (1992).

    Article  CAS  Google Scholar 

  • Raimbault M., Alazard D.: Culture method to study fungal growth in solid fermentation.Eur. J. Appl. Microbiol. 9, 199–209 (1980).

    Article  CAS  Google Scholar 

  • Reddy C.A.: The potential for white-rot fungi in the treatment of pollutants.Curr. Opin. Biotechnol. 6, 320–328 (1995).

    Article  CAS  Google Scholar 

  • Ríos-Leal E., Rodríguez-Vázquez R., Galindo T.: Separation of phenolic compounds from sugarcane bagasse pith and their determination by HPLC.J. Wood Sci. Technol. 14, 369–382 (1994).

    Article  Google Scholar 

  • Rodríguez-Vázquez R., Areyzaga M., Parada A., Ríos-Leal E., Anguis-Terrazas C.: Isolation and characterization of lignin from rice hull.J. Sci. Food Agric. 62, 101–104 (1993).

    Article  Google Scholar 

  • Rodríguez-Vázquez R., Díaz-Cervantes D.: Effect of chemical solutions sprayed on sugarcane bagasse pith to produce single cell protein: physical and chemical analysis of pith.Biores. Technol. 47, 159–164 (1994).

    Article  Google Scholar 

  • Rojas-Avelizapa N.G.: Biodegradación de compuestos aromáticos contenidos en aguas de pulpeo porPhenorochœte chrysosporium. (In Spain) MSc Thesis.Centro de Investigación y de Estudios Avanzados del I.P.N. (México) 1995.

    Google Scholar 

  • Rodríguez-Vázquez R., Villanueva-Ventura G., Ríos-Leal E.: Sugarcane bagasse pith dry pretreatment for single cell protein production.Biores. Technol. 39, 17–22 (1992).

    Article  Google Scholar 

  • TAPPI: Acid-insoluble lignin in wood and pulp (Standard method T222 os-74).Technical Association of Pulp and Paper Industries, Technology Park, Atlanta (GA, USA) 1989.

  • TAPPI: Extractive free material. Standard method T12 m-45 and T6 m-54.Technical Association of Pulp. and Paper Industries, Technology Park, Atlanta (GA, USA) 1984.

  • TAPPI: Holocellulose. Standard method T9M-54 and ASTM D1104-56.Technical Association of Pulp and Paper Industries, Technology Park, Atlanta (GA, USA) 1987.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez-Vázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Vázquez, R., Cruz-Córdova, T., Fernández-Sánchez, J.M. et al. Use of sugarcane bagasse pith as solid substrate forP. chrysosporium growth. Folia Microbiol 44, 213–218 (1999). https://doi.org/10.1007/BF02816245

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816245

Keywords

Navigation