Skip to main content
Log in

Production and characterization of raffinose-hydrolysing and invertase activities ofAspergillus fumigatus

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Raffinose-type galactose oligosaccharides constitute a substantial part (40%) of the soluble sugars present in soybean seeds and are responsible for flatulence following ingestion of soybean and other legumes. Enzymic hydrolysis of these oligosaccharides would improve the nutritional value of soybean milk.Aspergillus fumigatus produces substantial raffinose-hydrolysing and invertase activities when grown on wheat straw. Three proteins displaying maximal activity at pH 4.5–5.5 and 55–60°C and having molar mass of 66.8, 50.3 and 30.2 kDa were purified. Raffinose and sucrose were hydrolyzed with equivalent affinities by each protein. Nevertheless, theK m andV lim values determined for hydrolysis of sucrose by the 66.8 kDa enzyme differed from those determined with the 50.3 kDa protein. Glucose was produced when sucrose was the substrate. The three proteins hydrolyzed also stachyose but not melibiose, maltose, inulin or 4-nitrophenyl α-d-galactopyranoside.A. fumigatus enzymes may be candidates for processing of soybean milk to reduce its flatulence potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslanidis C., Schmid K., Schmitt R.: Nucleotide sequence and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose inEscherichia coli.J. Bacteriol.171, 6753–6763 (1989).

    PubMed  CAS  Google Scholar 

  • Aslanidis C., Schmid R.: Regulatory elements of the raffinose operon: nucleotide sequence of operator and repressor genes.J. Bacteriol.172, 2178–2180 (1990).

    PubMed  CAS  Google Scholar 

  • Bergmeyer H.U., Bernt E.: Determination of glucose with oxidase and peroxidase, pp. 1205–1215 in H.U. Bergmeyer (Ed.):Methods of Enzymatic Analysis, Vol. 3. New York, 1974.

  • Blum H., Beier H., Gross H.: Improved silver Verlag Chemie—Academic Press staining of plant proteins, RNA and DNA in polyacrylamide gels.Electrophoresis8, 93–99 (1987).

    Article  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle dye biding.Anal. Biochem.72, 680–685 (1976).

    Article  Google Scholar 

  • Burkardt H.J., Mattes R., Schimid K., Schmit R.: Properties of two conjugative plasmids mediating tetracycline resistance, raffinose catabolism and hydrogen sulfide production inEscherichia coli.Mol. Gen. Genet.166, 75–84 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Cavazzoni V., Adami A., Craveri R.: α-Galactosidase from the yeastCandida javanica.Appl. Microbiol. Biotechnol.26, 555–559 (1987).

    Article  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural proteins during the assembly of head of bacteriophage T4.Nature227, 680–683 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem.31, 426–428 (1956).

    Article  Google Scholar 

  • Moriguchi T., Sanada T., Yamaki S.: Properties of invertase purified from peach fruits.Phytochemistry30, 95–97 (1990).

    Article  Google Scholar 

  • Moser M., Menz G., Blaser K., Crameri R.: Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing possible virulence factor formAspergillus fumigatus.Infect. Immun.62, 936–942 (1994).

    PubMed  CAS  Google Scholar 

  • Mukherjee K., Sengupta S.: Purification and properties of nonspecific β-fructofuranosidase (inulinase) from the mushroomPanœolus papillonaceus.Can. J. Microbiol.33, 520–524 (1987).

    Article  CAS  Google Scholar 

  • Price K.R., Lewis J., Wyatt G.M., Fenwick G.R.: Flatulence-causes, relation to diet and remedies.Nahrung32, 609–626 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Quiroga E.N., Vattuone M.A., Sampietro A.R.: Purification and characterization of the invertase fromPycooporus sanguineus.Biochim. Biophys. Acta125, 75–80 (1995).

    Google Scholar 

  • de Rezende S.T., Felix C.R.: Raffinose-hydrolyzing ofAspergillus fumigatus.Biotechnol. Letters19, 217–220 (1997).

    Article  Google Scholar 

  • Rodriguez J., Perez J.A., Ruiz T., Rodriguez L.: Characterization of the invertase fromPichia anomala.Biochem. J.306, 235–239 (1995).

    PubMed  CAS  Google Scholar 

  • Rojo H.P., Vattuone M.A., Sampietro A.R.: Invertase fromSchizophyllum commune.Phytochemistry37, 119–123 (1994).

    Article  CAS  Google Scholar 

  • Santos R.M.B., Firmino A.A.P., Felix C.R.: Keratinolytic activity ofAspergillus fumigatus.Cur. Microbiol.33, 364–370 (1996).

    Article  CAS  Google Scholar 

  • Schmid K., Ritschewald S., Schmitt R.: Relationships among raffinose plasmids determined by the immunochemical cross-reaction of their α-galactosidase.J. Gen. Microbiol.114, 477–481 (1979).

    PubMed  CAS  Google Scholar 

  • Yanase H., Iwata M., Kita K., Kato N., Tonomura K.: Purification, crystallization, and characterization of the extracellular invertase fromZymomonas mobilis.J. Ferment. Bioeng.79, 367–369 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. de Rezende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rezende, S.T., Felix, C.R. Production and characterization of raffinose-hydrolysing and invertase activities ofAspergillus fumigatus . Folia Microbiol 44, 191–195 (1999). https://doi.org/10.1007/BF02816241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816241

Keywords

Navigation