Skip to main content
Log in

Structure and function of the stalk, a putative regulatory element of the yeast ribosome. Role of stalk protein phosphorylation

  • Papers
  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypepties and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previousin vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effects of the PKC kinase stimulate thein vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • van Agthoven A., Kriek J., Amons R., Möller W.: Isolation and characterization of the acidic phosphoproteins of 60S ribosomes fromArtemia salina and rat liver.Eur. J. Biochem. 91, 553–556 (1978).

    Article  PubMed  Google Scholar 

  • Amons R., Pluijms W., Möller W.: The primary structure of ribosomal protein eL12/eL12P fromArtemia salina 80S ribosomes.FEBS Lett. 104, 85–89 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J., Vangala S., Szick K., Lee C.H.: Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots. Components and changes in response to flooding.Plant Physiol. 114, 1293–1305 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ballesta J.P.G., Remacha M.: The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery.Progr. Nucl. Acad Res. Mol. Biol. 55, 157–193 (1996).

    Article  CAS  Google Scholar 

  • Hanna D.E., Rethinaswamy A., Glover C.V.: Casein kinase II is required for cell cycle progression during G1 and G2/M inSaccharomyces cerevisiae.J. Biol. Chem. 270, 25905–25914 (1991).

    Google Scholar 

  • Hasler P., Brot N., Weisbach H., Parnassa A.P., Elkon K.B.: Ribosomal proteins P0, P1, and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini.J. Biol. Chem. 266, 13815–13820 (1991).

    PubMed  CAS  Google Scholar 

  • Juan-Vidales F., Saenz-Robles M.T., Ballesta J.P.G.: Acidic proteins of the large ribosomal subunit inSaccharomyces cerevisiae. Effect of phosphorylation.Biochemistry 23, 390–396 (1984).

    Article  Google Scholar 

  • Kudlicki W., Szyszka R., Palen E., Gasior E.: Evidence for a highly specific protein kinase phosphorylating two strongly acidic proteins of yeast 60S ribosomal subunit.Biochim. Biophys. Acta 633, 376–385 (1980).

    PubMed  CAS  Google Scholar 

  • Kuenzel E.A., Mulligan J.A., Sommercorn J., Krebs E.G.: Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides.J. Biol. Chem. 262, 9136–9140 (1987).

    PubMed  CAS  Google Scholar 

  • Lin A., Wittman-Leibold B., McNelly T., Wool I.G.: The primary structure of the acidic phosphoprotein from rat liver 60S ribosomal subunit.J. Biol. Chem. 257, 9189–9197 (1982).

    PubMed  CAS  Google Scholar 

  • Macconnell W.P., Kaplan N.O.: The activity of the acidic phosphoproteins from the 80S rat liver ribosome.J. Biol. Chem. 257, 5359–5366 (1982).

    PubMed  CAS  Google Scholar 

  • Pilecki M., Grankowski N., Jacobs J., Gąsior E.: Specific protein kinase fromSaccharomyces cerevisiae cells phosphorylating 60S ribosomal subunit.Eur. J. Biochem. 206, 259–267 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Remacha M., Jimenez-Diaz A. Bermejo B., Rodriguez-Gabriel M.A., Guarinos E., Ballesta J.P.G. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression inSaccharomyces cerevisiae.Mol. Cell. Biol. 15, 4754–4762 (1995).

    PubMed  CAS  Google Scholar 

  • Remacha M., Santos C., Ballesta J.P.G.: Disruption of single-copy genes encoding acidic ribosomal proteins inSaccharomyces cerevisiae.Mol. Cell. Biol. 10, 2182–2190 (1990).

    PubMed  CAS  Google Scholar 

  • Remacha M., Santos C., Bermejo B., Naranda T., Ballesta J.P.G.: Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement forin vivo protein synthesis.J. Biol. Chem. 267, 12061–12067 (1992).

    PubMed  CAS  Google Scholar 

  • Rethinaswamy A., Birnbaum M.J., Glover C.V.: Temperature-sensitive mutations of theCKA1 gene reveal a role for casein kinase II in maintenance of cell polarity inSaccharomyces cerevisiae.J. Biol. Chem. 273, 5869–5877 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F., Juan-Vidales F., Ballesta J.P.G.: Effect of phosphorylation on affinity of acidic proteins fromSaccharomyces cerevisiae for the ribosome.Eur. J. Biochem. 114, 609–613 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F., Reyes R., Conde P., Ballesta J.P.G.: Acidic ribosomal proteins from eukaryotic cells. Effect on ribosomal functions.Eur. J. Biochem. 98, 409–416 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sanchermann J., Krüger A., Kristiansen K.: Characterization of acidic proteins inTetrahymena pyriformis.FEBS Lett. 107, 343–347 (1979).

    Article  Google Scholar 

  • Santos C., Ballesta J.P.G.: Ribosomal phosphoprotein P0, contrary to phosphoproteins P1 and P2, is required forS. cerevisiae viability and ribosome assembly.J. Biol. Chem. 269, 15689–15696 (1994).

    PubMed  CAS  Google Scholar 

  • Santos C., Ballesta J.P.G.: The highly conserved protein P0 carboxyl end is essential for ribosome activity only in the absence of proteins P1 and P2.J. Biol. Chem. 270, 20608–20614 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Scharf K.-D., Nover L.: Control of ribosome biosynthesis in plant cell cultures under heat shoek conditions. II. Ribosomal proteins.Biochim. Biophys. Acta 909, 44–57 (1987).

    CAS  Google Scholar 

  • Szyszka R., Bou G., Ballesta J.P.G.: RAP kinase, a new enzyme phosphorylating the acidic P proteins fromSaccharomyces cerevisiae ribosomes.Biochim. Biophys. Acta 1293, 213–221 (1996).

    PubMed  Google Scholar 

  • Tsurugi K., Ogata K.: Evidence for the exchangeability of acidic ribosomal proteins on cytoplasmic ribosomes in regenerating rat liver.J. Biochem. 98, 1427–1431 (1985).

    PubMed  CAS  Google Scholar 

  • Vard C., Guillot D., Bargis P., Lavergne J.P., Reboud J.P. A specific role for the phosphorylation of mammalian acidic ribosomal protein P2.J. Biol. Chem. 272, 20259–20262 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez M.P., Schijman A.G., Levin M.J.: Nucleotide sequence of a cDNA encoding aTryponosoma, cruzi acidic ribosomal P1 type protein.Nucl. Acids Res. 20, 2892 (1992a).

    Article  Google Scholar 

  • Vazquez M.P., Schuijman A.G., Panebra A., Levin M.J.: Nucleotide sequence of a cDNA encoding anotherTrypanosoma cruzi acidic ribosomal P2 type protein (TcP2b).Nucl. Acids Res. 20, 2893 (1992b).

    Article  PubMed  CAS  Google Scholar 

  • Zambrano R., Briones E., Remacha M., Ballesta J.P.G.: Phosphorylation of the acidic ribosomal P proteins inSaccharomyces cerevisiae. A reappraisal.Biochemistry 36, 14439–1446 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zinker S.: P5/P5′—the acidic ribosomal phosphoprotein fromS. cerevisiae.Biochim. Biophys. Acta 606, 76–82 (1980).

    PubMed  CAS  Google Scholar 

  • Zinker S., Warner J.R.: The ribosomal proteins ofSaccharomyces cerevisiae. Phosphorylated and exchangeable proteins.J. Biol. Chem. 251, 1799–1807 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. G. Ballesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Gabriel, M.A., Bou, G., Briones, E. et al. Structure and function of the stalk, a putative regulatory element of the yeast ribosome. Role of stalk protein phosphorylation. Folia Microbiol 44, 153–163 (1999). https://doi.org/10.1007/BF02816234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816234

Keywords

Navigation