Skip to main content
Log in

Protein kinases phosphorylating acidic ribosomal proteins from yeast cells

  • Papers
  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Phosphorylation of ribosomal acidic proteins ofSaccharomyces cerevisiae is an important mechanism regulating a number of active ribosomes. The key role in the regulatory mechanism is played by specific phosphoprotein kinases and phosphoprotein phosphatases. Three different cAMP-independent protein kinases phosphorylating acidic ribosomal proteins have been identified and characterized. The protein kinase 60S (PK60S), RAP kinase, and casein kinase type 2 (CK2). All three protein kinases phosphorylate serine residues which are localized in the C-terminal end of phosphoproteins. Synthetic peptides were used to determinate the amino acid sequence of phosphoacceptor site for PK60S. Peptide AAEESDDD derived from phosphoproteins YP1β/β′ and YP2α turned out to be the best substrate for PK60S. A number of halogenated benzimidazoles and 2-azabenzimidazoles were tested as inhibitors of the three protein kinases. 4,5,6,7-Tetrabromo-2-azabenzimidazole inhibits phosphorylation only of these polypeptides phosphorylated by protein kinase 60S, namely YP1β/β′ and YP2α, but not the other, YP1α and YP2β phosphorylated by protein kinases RAP and CK2. RAP kinase has been found in an active form in the soluble fraction ofS. cerevisiae. The enzyme uses ATP as a phosphate donor and is less sensitive to heparin than casein kinase 2. RAP kinase monophosphorylates the four acidic proteins. The ribosome-bound proteins are a better substrate for the enzyme. Multifunctional CK2 kinase phosphorylate all four acidic proteins. The kinase phosphorylates preferentially serine or threonine residues surrounded by cluster of acidic residues. The enzyme activity is stimulatedin vitro by the presence of polylysine and inhibited by heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CK2:

protein kinase CK2 (hitherto known as casein kinase type 2 and/or casein kinase II)

PK60S:

protein kinase 60S ribosomal subunits

RAP kinase:

ribosomal acidic protein kinase

References

  • Ahmed K., Goueli S.A., Williams-Ashman H.G.: Mechanisms and significance of polyamine stimulation of various protein kinase reaction.Adv. Enzyme Regul.25, 401–421 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Allende J.E., Allende C.C.: Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation.FASEB J.9, 313–323 (1995).

    PubMed  CAS  Google Scholar 

  • Ballesta J.P.G., Remacha M., Naranda T., Santos C., Bermejo B., Jimenez-Diaz A., Ortiz-Reyes B.: The acidic ribosomal proteins and the control of protein synthesis in yeast, pp. 67–80 in A.J.P. Brown, M.F. Tuite, J.E.G. McCarthy (Eds):Protein Synthesis and Targeting in Yeast, Vol. H71. Springer-Verlag, Berlin-Heidelberg 1993.

    Google Scholar 

  • Bidwai A.P., Reed J.C., Glover C.V.C.: Casein kinase II ofSaccharomyces cerevisiae contains two distinct regulatory subunits, β and β′.Arch. Biochem. Biophys.309, 348–355 (1994). 02

    Article  PubMed  CAS  Google Scholar 

  • Boguszewska A., Szyszka R., Grankowski N.: The phosphorylation sites of ribosomal P proteins fromSaccharomyces cerevisiae cells by endogenous CK-2, PK60S and RAP protein kinases.Acta Biochim. Polon.44, 191–200 (1997).

    PubMed  CAS  Google Scholar 

  • Boldyreff B., Mietens U., Issinger O.-G.: Structure of protein kinase CK2: dimerization of the human β-subunit.FEBS Lett.379, 153–156 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Caizergues-Ferrer M., Belenguer P., Lapeyre B., Amalric F., Wallace M.O., Olson M.O.J.: Phosphorylation of nucleolin by nucleolar type NII protein kinase.Biochemistry26, 7876–7883 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Carmichael D.F., Geachlen R.L., Allen S.M., Krebs E.G.: Type II regulatory subunit of cAMP-dependent protein kinase.J. Biol. Chem.257, 10440–10445 (1982).

    PubMed  CAS  Google Scholar 

  • Chan P.-K., Aldrich M., Cook R.G., Bush H.: Amino acid sequence of protein B23 phosphorylation site.J. Biol. Chem.261, 1868–1872 (1986).

    PubMed  CAS  Google Scholar 

  • Clark S.J., Colthurst D.R., Proud C.G.: Structure and phosphorylation of eukaryotic initiation factor 2. Casein kinase 2 and protein kinase C phosphorylate distinct but adjacent sites in b subunit.Biochim. Biophys. Acta968, 211–219 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Cochet C., Chambaz E.M.: Polyamine-mediated protein phosphorylations: a possible target for intracellular polyamine action.Mol. Cell. Endocrinol.30, 247–266 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Cohen P., Yellowless D., Aitken A., Donella-Deana A., Hemmings B.A., Parker P.J.: Separation and characterization of glycogen synthase kinase 3, glycogen synthase kinase 4 and glycogen synthase kinase 5 from rabbit skeletal muscle.Eur. J. Biochem.124, 21–35 (1982).

    Article  PubMed  CAS  Google Scholar 

  • DePaoli-Roach A.A., Roach P.J.: Heparin inhibition and polyamine stimulation of a glycogen synthase kinase (PC0,7) from rabbit skeletal muscle.Arch. Biochim. Biophys.217, 305–311 (1982).

    Article  CAS  Google Scholar 

  • Dobrowolska G., Meggio F., Pinna L.A.: Characterization of multiple forms of maize seedling protein kinases reminiscent of animal casein kinases S (type I) and TS (type 2).Biochim. Biophys. Acta931, 188–195 (1987).

    Article  CAS  Google Scholar 

  • Dobrowolska G., Muszyńska G., Shugar D.: Benzimidazole nucleoside analogues as inhibitors of plant (maize seedlings) casein kinases.Biochim. Biophys. Acta1080, 221–226 (1991).

    PubMed  CAS  Google Scholar 

  • Edelman A.M., Blumenthal D.K., Krebs E.G.: Protein serine/threonine kinases.Ann. Rev. Biochem.56, 567–613 (1987).

    PubMed  CAS  Google Scholar 

  • Feige J.J., Pirollet F., Cochet C., Chambaz E.M.: Selective inhibition of a cyclic nucleotide-independent protein kinase (G type casein kinase) by naturally occurring glycosoaminoglycans.FEBS Lett.121, 139–142 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Glover C.V.C.: On the physiological role of casein kinase II inSaccharomyces cerevisiae.Progr. Nucl. Acid Res.59, 95–133 (1998).

    CAS  Google Scholar 

  • Gonzatti-Haces M.I., Traugh J.A.: Kinetics of phosphorylation of eIF-2 by the hemin controlled repressor and casein kinase ii; inhibition by hemin and 2,3-diphosphoglyceric acid.J. Biol. Chem.257, 6642–6645 (1982).

    CAS  Google Scholar 

  • Grankowski N., Gąsior E., Issinger O.-G.: Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells.Biochim. Biophys. Acta1158, 194–196 (1993).

    PubMed  CAS  Google Scholar 

  • Hara T., Takahashi K., Endo H.: Reversal of heparin inhibitor of nuclear protein kinase NII by polyamines and histones.FEBS Lett.128, 33–36 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Hathaway G.M., Lubben T.H., Traugh J.A.: Inhibition of casein kinase II by heparin.J. Biol. Chem.255, 8038–8041 (1980).

    PubMed  CAS  Google Scholar 

  • Hathaway G.M., Traugh J.A.: Cyclic nucleotide independent protein kinases from rabbit reticulocytes. Purification of casein kinases.J. Biol. Chem.254, 762–768 (1979).

    PubMed  CAS  Google Scholar 

  • Hathaway G.M., Traugh J.A.: Casein kinase—multipotential protein kinases, pp. 101–127 in E. Stadtman, B. Horecker (Eds):Current Topics in Cellular Regulation. Academic Press, New York 1982.

    Google Scholar 

  • Hathaway G.M., Traugh J.A.: Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition.J. Biol. Chem.259, 7011–7015 (1984a).

    PubMed  CAS  Google Scholar 

  • Hathaway G.M., Traugh J.A.: Regulation of casein kinase II by 2,3-bisphosphoglycerate in erythroid cells.J. Biol. Chem.259, 2850–2855 (1984b).

    PubMed  CAS  Google Scholar 

  • Haystead T.A.J., Campbell D.G., Hardie D.G.: Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes.Eur. J. Biochem.175, 347–354 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Hemmings B.A., Aitken A., Cohen P., Rymond M., Hofmann F.: Phosphorylation of type-II regulatory subunit of cyclic-AMP-dependent protein kinase by glycogen kinase-3 and glycogen synthase kinase 5.Eur. J. Biochem.127, 473–481 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Hershey J.W.B.: Translational control in mammalian cells.Ann. Rev. Biochem.60, 717–755 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Hill B.L., Drickamer K., Brodsky F.M., Parcham P.: Identification of the phosphorylation sites of clathrin light chain LCb.J. Biol. Chem.263, 5499–5501 (1988).

    PubMed  CAS  Google Scholar 

  • Holmes C.F.B., Kuret J., Chisholm A.A.K., Cohen P.: Identification of the sites on rabbit skeletal muscle protein phosphatase inhibitor-2 phosphorylated by casein kinase-II.Biochim. Biophys. Acta870, 408–416 (1986).

    PubMed  CAS  Google Scholar 

  • Hunter T., Plowman G.: The protein kinases in budding yeast: six score and more.Trends Biochem. Sci.22, 18–22 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Issinger O.-G.: Casein kinases: pleiotropic mediators of cellular regulation.Pharmacol. Ther.59, 1–30 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Jacob S.T., Rose K.M., Canellakis Z.N.: Effect of spermidine and its monoacetylated derivatives on phosphorylation by nuclear protein kinase NII, pp. 631–646 in U. Bachrach, A. Kaye, R. Chayen (Eds):Advances in Polyamine Research. Raven Press, New York 1983.

    Google Scholar 

  • Jakubowicz T., Cytryńska M., Kowalczyk W., Gąsior E.: Phosphorylation of acidic ribosomal proteins by ribosome associated protein kinases inSaccharomyces cerevisiae andSchizosaccharomyces pombe.Acta Biochim. Polon.40, 497–505 (1993).

    PubMed  CAS  Google Scholar 

  • Janssen G.M.C., Maessen G.D.F., Amos R., Möller W.: Phosphorylation of elongation factor 1β by an endogenous kinase affects its catalytic nucleotide exchange activity.J. Biol. Chem.263, 11063–11066 (1999).

    Google Scholar 

  • Juan-Vidales F., Saenz-Robles M.T., Ballesta J.P.G.: Acidic proteins of the large ribosomal subunit inSaccharomyces cerevisiae. Effect of phosphorylation.Biochemistry23, 390–396 (1984).

    Article  Google Scholar 

  • Kishimoto A., Brown M.S., Slaughter C.A., Goldstein J.L.: Phosphorylation of serine 833 in cytoplasmic domain of low density lipoprotein receptor by a high molecular weight enzyme resembling casein kinase II.J. Biol. Chem.262, 1344–1351 (1987).

    PubMed  CAS  Google Scholar 

  • Krebs E.G.: The growth of research on protein phosphorylation.Trends Biochem. Sci.19, 439–444 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki W., Grankowski N., Gąsior E.: Ribosomal protein as a substrate for a GTP-dependent protein kinase in yeast.Mol. Biol. Rep.3, 121–129 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki W., Grankowski N., Gąsior E.: Isolation and properties of two protein kinases from yeast which phosphorylate casein and some ribosomal proteins.Eur. J. Biochem.84, 493–498 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki W., Szyszka R., Paleń E., Gąsior E.: Evidence for a highly specific protein kinase phosphorylating two strongly acidic proteins of yeast 60S ribosomal subunit.Biochim. Biophys. Acta633, 376–385 (1980).

    PubMed  CAS  Google Scholar 

  • Kuenzel E.A., Mulligan J.A., Sommecorn J., Krebs E.G.: Substrate specificity determinants for casein kinase II as deduced from the studies with synthetic peptides.J. Biol. Chem.262, 9136–9140 (1987).

    PubMed  CAS  Google Scholar 

  • Lees-Miller S.P., Anderson C.W.: Two human 90-kDa heat shock proteins are phosphorylatedin vivo at conserved serines that are phosphorylatedin vitro by casein kinase II.J. Biol. Chem.264, 2431–2437 (1989).

    PubMed  CAS  Google Scholar 

  • Levin M.J., Vazquez M., Kaplan D., Schijman A.G.: TheTrypanosoma crusi ribosomal protein P family: classification and antigenicity.Parasitol. Today9, 381–384 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lilias A.: Comparative biochemistry and biophysics of ribosomal proteins.Internat. Rev. Cytol.124, 103–136 (1991).

    Article  Google Scholar 

  • Lüscher B., Künzel E.A., Krebs E.G., Eisenman R.N.: Myc oncoproteins are phosphorylated by casein kinase II.EMBO J.8, 1111–1119 (1989).

    PubMed  Google Scholar 

  • MacConnell W.P., Kaplan N.O.: The role of ethanol extractable proteins from the 80S rat liver ribosome.Biochem. Biophys. Res. Commun.92, 46–52 (1980).

    Article  PubMed  CAS  Google Scholar 

  • MacConnel W.P., Kaplan N.O.: The activity of the acidic phosphoproteins from the 80S rat liver ribosome.J. Biol. Chem.257, 5359–5366 (1982).

    Google Scholar 

  • Marchiori F., Meggio F., Marin O., Borin G., Calderan A., Ruzza P., Pinna L.A.: Synthetic peptide substrates for casein kinase-2. Assessment of minimum structural requirements for phosphorylation.Biochim. Biophys. Acta971, 332–338 (1988).

    PubMed  CAS  Google Scholar 

  • Marin O., Meggio F., Marchiori F., Borin G., Pinna L.A.: Site specificity of casein kinase-2 (TS) from rat liver cytosol.Eur. J. Biochem.160, 239–244 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Brunati A.M., Pinna L.A.: Autophosphorylation of type 2 casein kinase TS at both its a and β-subunits.FEBS Lett.160, 203–208 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Brunati A.M., Pinna L.A.: Polycation-dependent Ca2+-antagonised phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase.FEBS Lett.215, 241–246 (1987a).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Donella-Deana A., Brunati A.M., Pinna L.A.: Inhibition of rat liver cytosol casein kinases by heparin.FEBS Lett.141, 257–262 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Flamigni F., Guarnieri C., Pinna L.A.: Location of the phosphorylation site for casein kinase-2 within the amino acid sequence of ornithine decarboxylase.Biochim. Biophys. Acta929, 114–116 (1987b).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Grankowski N., Kudlicki W., Szyszka R., Gąsior E., Pinna L.A.: Structure and properties of casein kinase-2 fromSaccharomyces cerevisiae. A comparison with the liver enzyme.Eur. J. Biochem.159, 31–38 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Marchiori F., Borin G., Chessa G., Pinna L.A.: Synthetic peptides including acidic clusters as substrates and inhibitors of rat liver casein kinase TS (type-2).J. Biol. Chem.259, 14576–14579 (1984).

    PubMed  CAS  Google Scholar 

  • Meggio F., Pinna L.A.: Subunit structure and autophosphorylation mechanism of casein kinase-TS (type 2) from rat liver cytosol.Eur. J. Biochem.145, 593–599 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Meggio F., Shugar D., Pinna L.A.: Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1.Eur. J. Biochem.187, 89–94 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K., Tsurugi K.: cDNA and deduced amino acid sequence of acidic ribosomal protein A2 fromSaccharomyces cerevisiae.Nucl. Acids Res.16, 3575–3588 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y., Chambraud B., Radanyi C., Leclerc J., Lebeau M.-C., Renoir J.-M., Shiray R., Catelli M.-G., Yahara I., Baulieu E.-E.: Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: Regulation of Hsp90-binding activity of FKBP52.Proc. Nat. Acad. Sci USA94, 14500–14505 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Newton C.H., Shimmin L.C., Yee J., Dennis P.P.: A family of genes encode the multiple forms of theSaccharomyces cerevisiae ribosomal proteins equivalent to theEscherichia coli L12 protein and single form of the L-10 equivalent ribosomal protein.J. Bacteriol.172, 579–588 (1990).

    PubMed  CAS  Google Scholar 

  • Paleń E., Traugh J.A.: Phosphorylation of ribosomal protein S6 by cAMP-dependent protein kinase and mitogen-stimulated S6 kinase differentially alters translation of globin mRNA.J. Biol. Chem.262, 3518–3523 (1987).

    PubMed  Google Scholar 

  • Pearlstone J.R., Carpenter M.R., Johnson P., Smile L.B.: Amino-acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin.Proc. Nat. Acad. Sci. USA73, 1902–1906 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Pilecki M., Grankowski N., Jacobs J., Gąsior E.: Specific protein kinase fromSaccharomyces cerevisiae cells phosphorylating 60S ribosomal subunit.Eur. J. Biochem.206, 259–267 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Pinna L.A.: Casein kinase 2: an “eminence grise” in cellular regulation?Biochim. Biophys. Acta1054, 267–284 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Pinna L.A., Meggio F., Dedukina M.M.: Phosphorylation of troponin T by casein kinase TS.Biochem. Biophys. Res. Commun.100, 449–454 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Pinna L.A., Meggio F., Sarno S.: Casein kinase-2 and cell signalling, pp. 15–27 in P. Papa, J.M. Tager (Eds):Biochemistry of Cell Membranes. Birkhauser Verlag, Basel 1995.

    Google Scholar 

  • Remacha M., Jimenez-Diaz A., Bermejo B., Rodriguez Gabriel M.A., Guariones E., Ballesta J.P.G.: Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression inSaccharomyces cerevisiae.Mol. Cell Biol.15, 4754–4762 (1995a).

    PubMed  CAS  Google Scholar 

  • Remacha M., Jimenez-Diaz A., Santos C., Briones E., Zambrano R., Rodriguez Gabriel M.A., Guariones E., Ballesta J.P.G.: Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects.Biochem. Cell Biol.73, 959–968 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Remacha M., Saenz-Robles M.T., Vilella M.D., Ballesta J.P.G.: Independent genes coding for three acidic proteins of the large ribosomal subunit fromSaccharomyces cerevisiae.J. Biol. Chem.263, 9094–9101 (1988).

    PubMed  CAS  Google Scholar 

  • Remacha M., Santos C., Ballesta J.P.G.: Disruption of single-copy genes encoding acidic ribosomal proteins inSaccharomyces cerevisiae.Mol. Cell. Biol.10, 2182–2190 (1990).

    PubMed  CAS  Google Scholar 

  • Remacha M., Santos C., Bermejo B., Naranda T., Ballesta J.P.G.: Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement forin vivo protein synthesis.J. Biol. Chem.267, 12061–12067 (1992).

    PubMed  CAS  Google Scholar 

  • Rich B.E., Steitz J.A.: Human acidic ribosomal phosphoproteins P0, P1 and P2. Analysis of cDNA clones,in vitro synthesis and assembly.Mol. Cell. Biol.7, 4065–4074 (1987).

    PubMed  CAS  Google Scholar 

  • Rose K.M., Bell L.E., Siefken D.A., Jacob S.T.: A heparin-sensitive nuclear protein kinase.J. Biol. Chem.256, 7468–7477 (1981).

    PubMed  CAS  Google Scholar 

  • Sacks D.B., Traugh J.A., McDonald J.M.: Phosphorylation of calmodulin by casein kinase II.J. Cell. Biol.107, 54a (1988).

    Google Scholar 

  • Saenz-Robles M.T., Remacha M., Vilella M.D., Zinker S., Ballesta J.P.G.: The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity.Biochim. Biophys. Acta1050, 51–55 (1990).

    PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F., Juan-Vidales F., Ballesta J.P.G.: Effect of phosphorylation on affinity of acidic proteins fromSaccharomyces cerevisiae for the ribosome.Eur. J. Biochem.114, 609–613 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F., Reyes R., Conde P., Ballesta J.P.G.: Acidic ribosomal proteins from eukaryotic cells. Effect on ribosomal function.Eur. J. Biochem.98, 409–416 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sarno S., Vaglio P., Marin O., Meggio F., Issinger O.-G., Pinna L.A.: Basic residues in the 78–83 and 191–198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the β-subunit.Eur. J. Biochem.248, 290–295 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Saxena A., Padmanabha R., Glover C.V.C.: Isolation and sequencing of cDNA clones encoding α and β subunits ofDrosophila melanogaster casein kinase II.Mol. Cell. Biol.7, 3409–3417 (1987).

    PubMed  CAS  Google Scholar 

  • Scharf K.-D., Nover L.: Control of ribosome biosynthesis in plant cell cultures under the shock conditions. II. Ribosomal proteins.Biochim. Biophys. Acta909, 44–57 (1987).

    CAS  Google Scholar 

  • Sepuvelda E., Aguilar R., Sanchez de Jimenez E.: Purification and partial characterization of a plant acidic ribosomal protein kinase.Physiol. Plant.94, 715–721 (1995).

    Article  Google Scholar 

  • Shimmin L.C., Ramirez G., Matheson A.T., Dennis P.P.: Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacterial, eubacterial and eukaryotes.J. Mol. Evol.29, 448–462 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Shugar D.: Development of inhibitors of protein kinases CKI and CKII and some related aspects, including donor and acceptor specificities and viral protein kinases.Cell. Mol. Biol. Res.40, 411–419 (1994).

    PubMed  CAS  Google Scholar 

  • Shugar D.: Protein kinase inhibitors—potential chemotherapeutic agents.Acta Biochim. Polon.42, 408–415 (1995).

    Google Scholar 

  • Strycharz W.A., Nomura M., Lake J.A.: Ribosomal proteins L1/L12 localised at a single region of the large subunit by immune electronmicroscopy.J. Mol. Biol.126, 123–140 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Szyszka R., Boguszewska A., Grankowski N., Ballesta J.P.G.: Differential phosphorylation of ribosomal acidic proteins from yeast cell by two endogenous protein kinases: casein kinase-2 and 60S kinase.Acta Biochim. Polon.42, 357–362 (1995c).

    PubMed  CAS  Google Scholar 

  • Szyszka R., Boguszewska A., Shugar D., Grankowski N.: Halogenated benzimidazole inhibitors of phosphorylation,in vitro andin vivo, of the surface acidic proteins of the yeast ribosomal 60S subunit by endogenous protein kinases CK-II and PK60S.Acta Biochim. Polon.43, 389–396 (1996).

    PubMed  CAS  Google Scholar 

  • Szyszka R., Bou G., Ballesta J.P.G.: RAP kinase, a new enzyme phosphorylating the acidic P proteins fromSaccharomyces cerevisiae.Biochim. Biophys. Acta1293, 213–221 (1995a).

    Google Scholar 

  • Szyszka R., Grankowski N., Felczak K., Shugar D.: Halogenated benzimidazoles and benzotriazoles as selective inhibitors ofSaccharomyces cerevisiae protein kinases CKI and CKII.Biochem. Biophys. Res. Commun.208, 418–424 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Tashiro Y., Matsumura S., Murakami N., Kumon A.: The phosphorylation site for casein kinase II on 20,000-Da light chain of gizzard myosin.Arch. Biochem. Biophys.233, 540–546 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Tsurugi K., Collatz E., Todokoro K., Ulbrich N., Lightfoot H., Wool I.G.: Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60S ribosomal subunit proteins La, Lb, Lf, P1, P2, L13, L14, L20 and L38.J. Biol. Chem.253, 946–955 (1978).

    PubMed  CAS  Google Scholar 

  • Tsurugi K., Ogata K.: Evidence for exchangeability of acidic ribosomal proteins on cytoplasmic ribosomes in regenerating rat liver.J. Biochem.98, 1427–1431 (1985).

    PubMed  CAS  Google Scholar 

  • Tuazon P.T., Traugh J.A.: Casein kinase I and II—multipotential serine protein kinases: structure, function, and regulation.Adv. Sec. Messeng. Phosphoprot. Res.23, 123–164 (1991).

    CAS  Google Scholar 

  • Walton G.M., Spiess J., Gill G.N.: Phosphorylation of high mobility group protein 14 by casein kinase II.J. Biol. Chem.260, 4745–4750 (1985).

    PubMed  CAS  Google Scholar 

  • Wool I.G., Chan Y.L., Glück A., Suzuki K.: The primary structure of rat ribosomal proteins P0, P1 and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins.Biochimie73, 861–870 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Zadomeni R., Zadomeni M.C., Shugar D., Weinmann R.: Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole of specific RNA polymerase II transcription.J. Biol. Chem.261, 3414–3419 (1986).

    Google Scholar 

  • Zambrano R., Briones E., Remacha M., Ballesta J.P.G.: Phosphorylation of the acidic ribosomal P proteins inSaccharomyces cerevisiae: a reappraisal.Biochemistry36, 14439–14446 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zhang S.-H., Broome M.A., Lawton M.A., Hunter T., Lamb C.J.:atpkl, a novel ribosomal protein kinase gene fromArabidopsis. II. Functional and biochemical analysis of the encoded protein.J. Biol. Chem.269, 17593–17599 (1994).

    PubMed  CAS  Google Scholar 

  • Zinker S., Warner J.R.: The ribosomal proteins ofSaccharomyces cerevisiae. Phosphorylated and exchangeable proteins.J. Biol. Chem.251, 1799–1807 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyszka, R. Protein kinases phosphorylating acidic ribosomal proteins from yeast cells. Folia Microbiol 44, 142–152 (1999). https://doi.org/10.1007/BF02816233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816233

Keywords

Navigation