Skip to main content
Log in

Translational regulation by modifications of the elongation factor Tu

  • Papers
  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

EF-Tu fromE. coli, one of the superfamily of GTPase switch proteins, plays a central role in the fast and accurate delivery of aminoacyl-tRNAs to the translating ribosome. An overview is given about the regulatory effects of methylation, phosphorlation and phage-induced cleavage of EF-Tu on its function. During exponential growth, EF-Tu becomes monomethylated at Lys56 which is converted to Me2Lys upon entering the stationary phase. Lys56 is in the GTPase switch-1 regions (residues 49–62), a strongly conserved site involved in interactions with the nucleotide and the 5′ end of tRNA. Methylation was found to attenuate GTP hydrolysis and may thus enhance translational accuracy.In vivo 5–10% of EF-Tu is phosphorylated at Thr382 by a ribosome-associated kinase. In EF-Tu-GTP, Thr382 in domain 3 has a strategic position in the interface with domain 1; it is hydrogen-bonded to Glu117 that takes part in the switch-2 mechanism, and is close to the T-stem binding site of the tRNA, in a region known for many kirromycin-resistance mutations. Phosphorylation is enhanced by EF-Ts, but inhibited by kirromycin. In reverse, phosphorylated EF-Tu has an increased affinity for EF-Ts, does not bind kirromycin and can no longer bind aminoacyl tRNA. Thein vivo role of this reversibles modification is still a matter of speculation. T4 infection ofE. coli may trigger a phage-exclusion mechanism by activation of Lit, a host-encoded proteinase. As a result, EF-Tu is cleaved site-specifically between Gly59-Ile60 in the switch-1 region. Translation was found to drop beyond a minimum level. Interestingly, the identical sequence in the related EF-G appeared to remain fully intact. Although the Lit cleavage-mechanism may eventually lead to programmed cell death, the very efficient prevention of phage multiplication may be caused by a novel mechanisms ofin cis inhibition of late T4 mRNA translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel K., Jurnak F.: A complex profile of protein elongation: translating chemical energy into molecular movement.Structure4, 229–238 (1996b).

    Article  PubMed  CAS  Google Scholar 

  • Abel K., Yoder M.D., Hilgenfeld R., Jurnak F.: An α to β conformational switch in EF-Tu.Structure4, 1153–1159 (1996a).

    Article  PubMed  CAS  Google Scholar 

  • Aletta J.M., Cimato T.R., Ettinger M.J.: Protein methylation: a signal event in post-translational modification.Trends Biochem. Sci.23, 89–91 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Alexander C., Bilgin N., Lindschau C., Mesters J.R., Kraal B., Hilgenfeld R., Erdmann V.A., Lippmann C.: Phosphorylation of elongation factur Tu prevents ternary complex formation.J. Biol. Chem.270, 14541–14547 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Arai K., Clark B.F.C., Duffy L., Jones M.D., Kaziro Y., Laursen R.A., I'Italien J., Miller D.L., Nagarkatti S., Nakamura S., Nielsen K.M., Petesen T.E., Takayashi K., Wade M.: Primary structure of elongation factor Tu fromEscherichia coli.Proc. Nat. Acad. Sci. USA77, 1326–1330 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Berchtold H., Reshetnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R.: Crystal structure of active elongation factor Tu reveals major domain rearrangements.Nature365, 126–132 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal T., Douglass J., Smith D.: Conformational alteration of protein synthesis elongation factor FE-Tu by EF-Ts and kirromycin.Proc. Nat. Acad. Sci. USA74, 3264–3267 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Bosch L., Kraal B., Van der Meide P.H., Duisterwinkel F.J., Van Noort J.M.: The elongation factor EF-Tu and its two encoding genes.Progr. Nucl. Acids Res. Molec. Biol.30, 91–126 (1983).

    Article  CAS  Google Scholar 

  • Bourne H.R., Sanders D.A., Mccormick F.: The GTPase superfamily: conserved structure and molecular mechanism.Nature349, 117–127 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Caldas T.D., El Yaagoubi A., Richarmer G.: Chaperone properties of bacterial elongation factor EF-Tu.J. Biol. Chem.273, 11478–11482 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Chang Y.W.E., Traugh J.A.: Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation.J. Biol. Chem.272, 28252–28257 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Chang Y.W.E., Traugh J.A.: Insulin stimulation of phosphorylation of elongation factor 1 (eEF-1) enhances elongation activity.Eur. J. Biochem.251, 201–207 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Dever T.E., Costello C.E., Owens C.L., Rosenberry T.L., Merrick W.C.: Location of seven post-translational modifications in rabbit elongation factor 1α including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine.J. Biol. Chem.264, 20518–20525 (1989).

    PubMed  CAS  Google Scholar 

  • Georgiou T., Yu Y.T.N., Ekunwe S., Buttner M.J., Zuurmond A.M., Kraal B., Kleanthous C., Snyder L.: Specific peptideactivated proteolytic cleavage ofEscherichia coli elongation factor Tu.Proc. Nat. Acad. Sci. USA95, 2891–2895 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hughes S.M.: Are guanine nucleotide binding proteins a distinct class of regulatory proteins?.FEBS Lett.164, 1–8 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Kawashima T., Berthetcolominas C., Wulff M., Cusack S., Leberman R.: The structure of theEscherichia coli EF-Tu:EF-Ts complex at 2.5 ångstrom resolution.Nature379, 511–518 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kjeldgaard M., Nissen P., Thirup S., Nyborg J.: The crystal structure of elongation factor EF-Tu fromThermus aquaticus in the GTP conformation.Structure1, 35–50 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Kraal B., Zeff L.A.H., Mesters J.R., Boon K., Vorstenbosch E.L.H., Bosch L., Anborgh P.H., Parmeggiani A., Hilgenfeld R.: Antibiotic resistance mechanisms of mutant EF-Tu species inEscherichia coli.Biochem. Cell. Biol.73, 1167–1177 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki W., Coffman A., Kramer G., Hardesty B.: Renaturation of rhodanese by translational elongation factor EF-Tu. Protein refolding by EF-Tu flexing.J. Biol. Chem.272, 32206–32209 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Mesters J.R., Zeef L.A.H., Hilgenfeld R., de Graaf J.M., Kraal L., Bosch L.: The structural and functional basis for the kirromycin resistance of mutant EF-Tu species inEscherichia coli.EMBO J.13, 4877–4885 (1994).

    PubMed  CAS  Google Scholar 

  • Lippmann C., Lindschau C., Vijgenboom E., Schroder W., Bosch L., Erdmann V.A.: Prokaryotic elongation factor Tu is phosphorylatedin vivo.J. Biol. Chem.268, 601–607 (1993).

    PubMed  CAS  Google Scholar 

  • Mukulík K., Janda I.: Protein kinase associated with ribosomes phosphorylates ribosomal proteins ofStreptomyces collinus.Biochem. Biophys. Res. Commun.238, 370–376 (1997).

    Article  Google Scholar 

  • Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F.C., Nyborg J.: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.Science270, 1464–1472 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Nissen P., Kjeldgaard M., Thirup S., Clark B.F.C., Nyborg J.: The ternary complex of aminoacylated tRNA and EF-Tu GTP: recognition of a bond and a fold.Biochimie78, 921–933 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Nygård O., Nilsson L.: Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis.Eur. J. Biochem.191, 1–17 (1990).

    Article  PubMed  Google Scholar 

  • Parmeggiani A., Swart G.W.M.: Mechanism of action of kirromycin-like antibiotics.Ann. Rev. Microbiol.39, 557–577 (1985).

    Article  CAS  Google Scholar 

  • Peters H.I., Chang Y.W.E., Traugh J.A.: Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity.Eur. J. Biochem.234, 550–556 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Plath T., Knudsen C., Bilgin N., Lindschau C., Erdmann V., Lippmann C.: Threonine 382 is essential for EF-Tu function, pp. 9–10 inAbstr. Book 17th Internat. tRNA Workshop, Chiba (Japan) 1997.

  • Polekhina G., Thirup S., Kjeldgaard M., Nissen P., Lippmann C., Nyborg J.: Helix unwinding in the effector region of elongation factor EF-Tu-GDP.Structure4, 1141–1151 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Robertson E.S., Aggison L.A., Nicholson A.W.: Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infectedEscherichia coli.Mol. Microbiol.11, 1045–1057 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Van der Meide P.H., Vijgenboom E., Dicke M., Bosch L.: Regulation of the expression oftufA andtufB, the two genes coding for the elongation factor EF-Tu inEscherichia coli.FEBS Lett.139, 325–330 (1982).

    Article  PubMed  Google Scholar 

  • Van Noort J.M., Kraal B., Sinjorgo K.M.C., Persoon N.L.M., Johanns E.S.D., Bosch L.: Methylationin vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis.Eur. J. Biochem.160, 557–561 (1986).

    Article  PubMed  Google Scholar 

  • Vorstenbosch E., Pape T., Rodnina M.V., Kraal B., Wintermeyer W.: The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.EMBO J.15, 6766–6774 (1996).

    PubMed  CAS  Google Scholar 

  • Wittinghofer A., Frank R., Leberman R.: Composition and properties of trypsin-cleaved elongation factor Tu.Eur. J. Biochem.108, 423–431 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Young C.C., Bernlohr R.W.: Elongation factor Tu is methylated in response to nutrient deprivation inEscherichia coli.J. Bacteriol.173, 3096–3100 (1991).

    PubMed  CAS  Google Scholar 

  • Yu Y.T.N., Snyder L.: Translation elongation factor Tu cleaved by a phage-exclusion system.Proc. Nat. Acad. Sci. USA91, 802–806 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Zeidler W., Schirmer N.K., Egle C., Ribeiro S., Kreutzer R., Sprinzl M.: Proteolysis and amino acid replacements in the effector region ofThermus thermophilus elongation factor Tu.Eur. J. Biochem.239, 265–271 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kraal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraal, B., Lippmann, C. & Kleanthous, C. Translational regulation by modifications of the elongation factor Tu. Folia Microbiol 44, 131–141 (1999). https://doi.org/10.1007/BF02816232

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816232

Keywords

Navigation