Skip to main content
Log in

Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer's disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sera of normal controls and of patients with neurological diseases contain antineurofilament antibodies. Recent studies suggest that biochemically and immunologically distinct subclasses of neurofilaments occur in different types of neurons. Alzheimer's disease (AD), the major cause of dementia, is associated with a marked degeneration of brain cholinergic neurons. In the present work we characterized the repertoire and age dependence of antineurofilament antibodies in normal sera and examined whether the degeneration of cholinergic neurons in AD is associated with serum antibodies directed specifically against the neurofilaments of mammalian cholinergic neurons. This was performed by immunoblot assays utilizing neurofilaments from the purely cholinergic bovine ventral root neurons and from the chemically heterogeneous bovine dorsal root neurons. Antibodies to the heavy neurofilament protein NF-H were detected in normal control sera. Their levels were significantly higher in older (aged 70–79) than in younger (aged 40–59) subjects. These antibodies bound similarly to bovine ventral root and dorsal root NF-H and their NF-H specificity was unchanged during aging. In contrast, the levels of IgG in AD sera that are directed against ventral root cholinergic NF-H were higher than those directed against the chemically heterogeneous dorsal root NF-H. Immunoblot experiments utilizing dephosphorylated ventral root and dorsal root NF-H and chymotryptic fragments of these molecules revealed that AD sera contain a repertoire of antimamalian NF-H IgG. A subpopulation of these antibodies binds to phosphorylated epitopes that are specifically enriched in ventral root cholinergic NF-H and that are located on the carboxy terminal domain of this molecule. The level of these anticholinergic NF-H IgG are significantly higher in AD sera than in those of both normal controls and patients with multi-infarct dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinart D. M. and Roop D. R. (1988)Ann. Rev. Biochem. 57, 593–625.

    Article  Google Scholar 

  2. Robinson P. A. and Anderton B. H. (1988)Rev. Neurosci. 2, 1–41.

    CAS  Google Scholar 

  3. Myers M. W., Lazzarini R. A., Lee V. M.-Y., Schlaepfer, W. W., and Nelson D. L. (1987)EMBO J. 6, 1617–1626.

    PubMed  CAS  Google Scholar 

  4. Julien J.-P., Meyer D., Mushynski W., and Grosveld F. (1986) inMolecular Aspects of Neurobiology, Montalcini et al., eds., Springer-Verlag, Berlin, pp. 176–181.

    Google Scholar 

  5. Jones S. M. and Williams R. C. (1982)J. Biol. Chem. 257, 9902–9905.

    PubMed  CAS  Google Scholar 

  6. Carden M. J., Schlaepfer W. W., and Lee V. M.-Y. (1985)J. Biol. Chem. 260, 9805–9817.

    PubMed  CAS  Google Scholar 

  7. Julien J.-P. and Mushynski W. E. (1982)J. Biol. Chem. 257, 10,467–10,470.

    CAS  Google Scholar 

  8. Berglund A. M. and Ryugo D. K. (1991)J. Comp. Neurol. 306, 393–408.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell N. J. and Morrison J. H. (1989)J. Comp. Neurol. 282, 191–205.

    Article  PubMed  CAS  Google Scholar 

  10. Clark E. A. and Lee, V. M.-Y. (1991)J. Neurosci. Res. 30, 116–123.

    Article  PubMed  CAS  Google Scholar 

  11. Faigon M., Hadas E., Alroy G., Chapman J., Auerbach J. M., and Michaelson D. M. (1991)J. Neurosci. Res. 29, 490–498.

    Article  PubMed  CAS  Google Scholar 

  12. Szaro B. G., Whitnall M. H., and Gainer H. (1990)J. Comp. Neurol. 302, 220–235.

    Article  PubMed  CAS  Google Scholar 

  13. Vickers J. C., Costa M., Vitadello M., Dahl D., and Marotta C. A. (1990)Neuroscience 39, 743–759.

    Article  PubMed  CAS  Google Scholar 

  14. Sotelo J., Gibbs J. R., and Gajdusek D. C. (1980)Science 210, 190–196.

    Article  PubMed  CAS  Google Scholar 

  15. Bahmanyar S., Liem R. K. H., Griffin I. W., and Gajdusek D. C. (1984)J. Neuropathol. Exp. Neurol. 43, 369–375.

    PubMed  CAS  Google Scholar 

  16. Toh B., Gibbs C., Gajdusek D. C., Goudsmit J., and Dahl D. (1985)Proc. Natl. Acad. Sci. USA 82, 3485–3489.

    Article  PubMed  CAS  Google Scholar 

  17. Kurki P., Helve T., Dahl D., and Virtanen I. (1986)J. Rheumatol. 13, 69–73.

    PubMed  CAS  Google Scholar 

  18. Galbraith G. M. P., Emerson D., Fudenberg H. H., Gibbs C. J., and Gajdusek D. C. (1986)J. Clin. Invest. 78, 865–869.

    Article  PubMed  CAS  Google Scholar 

  19. Brown R. H., Johnson D., Ogonowski M., and Weiner H. L. (1987)Neurology 37, 152–155.

    PubMed  Google Scholar 

  20. Kumar M., Cohen D., and Eisdorfer C. (1988)Alzheimer Dis. Assoc. Disord. 2, 50–55.

    PubMed  CAS  Google Scholar 

  21. Fudenberg H. H. and Singh V. K. (1988)Drug Dev. Res. 15, 165–174.

    Article  Google Scholar 

  22. Yates C. M., Simpson J., Maloney A. F. J., Gordon A., and Reid A. H. (1980)Lancet 11, 979.

    Article  Google Scholar 

  23. Coyle J. T., Price D. L., and Delong M. R. (1983)Science 219, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  24. Chapman J., Bachar O., Korczyn A. D., Wertman E., and Michaelson D. M. (1988)J. Neurochem. 51, 479–485.

    Article  PubMed  CAS  Google Scholar 

  25. Chapman J., Bachar O., Korczyn A. D., Wertman E., and Michaelson D. M. (1989)J. Neurosci. 9, 2710–2717.

    PubMed  CAS  Google Scholar 

  26. Hassin-Baer S., Wertman E., Raphael M., Stark V., Chapman, J., and Michaelson D. M. (1992)Neurology 42, 551–555.

    PubMed  CAS  Google Scholar 

  27. Sorenson K. and Brodbeck U. (1986)J. Immunol. Meth. 95, 291–293.

    Article  Google Scholar 

  28. Debus E., Flugge G., Weber K., and Osborn M. (1982)EMBO J. 1, 41–45.

    PubMed  CAS  Google Scholar 

  29. Shaw G., Osborn M., and Weber K. (1986)Eur. J. Cell. Biol. 42, 1–9.

    PubMed  CAS  Google Scholar 

  30. Chin T. K., Eagles P. A. M., and Magg A. (1983)Biochem. J. 215, 239–252.

    PubMed  CAS  Google Scholar 

  31. McKhann G., Drachmann D., Folstein M., Katzman R., Price D., and Stadlan E. M. (1984)Neurology 34, 939–944.

    PubMed  CAS  Google Scholar 

  32. Zemcov A., Barclay L. L., Brush D., and Blass J. P. (1984)J. Am. Geriatric Soc. 32, 801–823.

    CAS  Google Scholar 

  33. Berg L. (1984)Br. J. Psychiat. 145, 339–340.

    CAS  Google Scholar 

  34. Colton T. (1974)Statistics in Medicine, Little Brown Co., Boston.

    Google Scholar 

  35. Ingram C. R. K., Phegan J., and Blumental H. T. (1974)J. Gerontol. 29, 20–27.

    PubMed  CAS  Google Scholar 

  36. Elizan T. S., Casals J., and Yahr M. D. (1983)J. Neurol. Sci. 59, 341–347.

    Article  PubMed  CAS  Google Scholar 

  37. Sternberger L. A. and Sternberger N. H. (1983)Proc. Natl. Acad. Sci. USA 80, 6126–6130.

    Article  PubMed  CAS  Google Scholar 

  38. Lee V. M.-Y., Carden M. J., Schlaepfer W. W., and Trojanowski J. Q. (1987)J. Neurosci. 7, 3474–3488.

    PubMed  CAS  Google Scholar 

  39. Dahl D., Labkovsky B, and Bigmani A. (1988)J. Comp. Neurol. 271, 445–450.

    Article  PubMed  CAS  Google Scholar 

  40. Tchernakov K., Soussan L., Hassin-Baer S., Wertman E. and Michaelson D. M. (1993)Res. Immunol. 143, 671–675.

    Google Scholar 

  41. Foley P., Bradford H. F., Dochert M., Fillet H., Levine V. M., McEwen B., Bucht G., and Hardy J. (1988)J. Neurol. 235, 466–471.

    Article  PubMed  CAS  Google Scholar 

  42. McRae A. and Dahlstrom A. (1992)Rev. Neurosci. 3, 79–98.

    Google Scholar 

  43. Sternberger N. H., Sternberger L. A., and Ulrich J. (1985)Proc. Natl. Acad. Sci. USA 82, 4274–4276.

    Article  PubMed  CAS  Google Scholar 

  44. Iqbal K. and Grundke-Iqbal I. (1991)Mol. Neurobiol. 5, 399–410.

    PubMed  CAS  Google Scholar 

  45. Lichtenberg-Kraag B., Mandelkow E. M., Biernat J., Steiner B., Schroter C., Gustke N., Meyer H. E., and Mandelkow E. (1992)Proc. Natl. Acad. Sci. USA 89, 5384–5388.

    Article  PubMed  CAS  Google Scholar 

  46. Mashiah E., Mallory M., Hansen L., Alford M., Deteresa R., and Terry R. (1993)Am. J. Pathol. 142, 1–13.

    Google Scholar 

  47. Soussan L., Barzilai A., and Michaelson D. M. (1993)J. Neurochem. 62, 770–776.

    Article  Google Scholar 

  48. Chapman J., Alroy G., Weiss Z., Faigon M., Feldon J., and Michaelson D. M. (1991)Neuroscience 40, 297–305.

    Article  PubMed  CAS  Google Scholar 

  49. Dubovik V., Faigon M., Feldon J., and Michaelson D. M. (1993)Neuroscience 56, 75–82.

    Article  PubMed  CAS  Google Scholar 

  50. Eilam D., Szechtman H., Faigon M., Dubovik V., Feldon J., and Michaelson D. M. (1993)Neuroscience 56, 83–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soussan, L., Tchernakov, K., Bachar-Lavi, O. et al. Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer's disease. Mol Neurobiol 9, 83–91 (1994). https://doi.org/10.1007/BF02816107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816107

Index Entries

Navigation