Skip to main content

On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys

Abstract

Relationships between crack initiation and crack growth toughness are reviewed by examining the crack tip fields and microscopic (local) and macroscopic (continuum) fracture criteria for the onset and continued quasi-static extension of cracks in ductile materials. By comparison of the micromechanisms of crack initiationvia transgranular cleavage and crack initiation and subsequent growthvia microvoid coalescence, expressions are shown for the fracture toughness of materials in terms of microstructural parameters, including those deduced from fractographic measurements. In particular the distinction between the deformation fields directly ahead of stationary and nonstationary cracks are explored and used to explain why microstructure may have a more significant role in influencing the toughness of slowly growing, as opposed to initiating, cracks. Utilizing the exact asymptotic crack tip deformation fields recently presented by Rice and his co-workers for the nonstationary plane strain Mode I crack and evoking various microscopic failure criteria for such stable crack growth, a relationship between the tearing modulusT R and the nondimensionalized crack initiation fracture toughnessJ Ic is described and shown to yield a good fit to experimental toughness data for a wide range of steels.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    ASTM E399-83, in “Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials,”1983 Annual Book of ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1983, pp. 170-553.

  2. 2.

    ASTM E813-81, in “Standard Test Method forJIc, a Measure of Fracture Toughness,”ibid., pp. 762–80.

  3. 3.

    J. A. Begley and J. D. Landes: inFracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, PA, 1974, pp. 170–86.

    Google Scholar 

  4. 4.

    J.F. Knott: inFundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  5. 5.

    C.F. Shih:J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–30.

    Article  Google Scholar 

  6. 6.

    J. R. Rice: inThe Mechanics of Fracture, F. Erdogan, ed., American Society for Mechanical Engineers, Warrendale, PA, 1976.

    Google Scholar 

  7. 7.

    P.C. Paris, H. Tacta, A. Zahoor, and H. Ernst: inElastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Mate- rials, Philadelphia, PA, 1979, pp. 5–36.

    Google Scholar 

  8. 8.

    C. F. Shih, H. G. de Lorenzi, and W. R. Andrews:Elastic-Plastic FractureASTM STP 668, American Society for Testing and Mate- rials, Philadelphia, PA, 1979, pp. 65–120.

    Google Scholar 

  9. 9.

    F. A. McClintock: inPhysics of Strength and Plasticity, A. S. Argon, ed., M.I.T. Press, Cambridge, MA, 1969, pp. 307–26.

    Google Scholar 

  10. 10.

    J. W. Hutchinson and P. C. Paris: inElastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 37–64.

    Google Scholar 

  11. 11.

    J. W. Hutchinson: inNon Linear Fracture Mechanics, Department of Solid Mechanics, The Tech. Univ. of Denmark, 1979.

  12. 12.

    R.O. Ritchie:J. Eng. Math. Tech., Trans. ASME Series H, 1983, vol. 105, pp. 1–7.

    Article  Google Scholar 

  13. 13.

    C.F. Shih, W.R. Andrews, and J.P.D. Wilkenson: inMechanical Behavior of Materials, Proc. 3rd Intl. Conf., K.J. Miller and R.F. Smith, eds., Pergamon Press, Oxford, 1980, vol. 3, pp. 589–601.

    Google Scholar 

  14. 14.

    M.L. Williams:J. Applied Mech., Trans. ASME, 1957, vol. 24, pp. 109–14.

    Google Scholar 

  15. 15.

    G.R. Irwin: inFracture, Handbuch der Physik, Springer, Berlin 1958, vol. 6, pp. 551–90.

    Google Scholar 

  16. 16.

    J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  17. 17.

    J. R. Rice and G. R. Rosengren:, pp. 1–12.

    Article  Google Scholar 

  18. 18.

    J. R. Rice:J. Applied Mech., Trans. ASME Series E, 1968, vol. 35, pp. 379–86.

    Google Scholar 

  19. 19.

    C. F. Shih: inFracture Analysis, ASTM STP 560, American Society for Testing and Materials, Philadelphia, PA, 1974, pp. 187–210.

    Google Scholar 

  20. 20.

    F. A. McClintock:in Fundamental Aspects of Structural Alloy Design, R.I. Jaffee and B.A. Wilcox, eds., Plenum, New York, NY, 1977, pp. 147–72.

    Google Scholar 

  21. 21.

    C.F. Shih: Division of Engineering, Brown University Report No. MRL E-147, Providence, RI, June 1983.

    Google Scholar 

  22. 22.

    J.R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M.F. Kanninen, W. G. Adler, A. R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  23. 23.

    R. M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  24. 24.

    D.M. Tracey:J. Eng. Mails. Tech., Trans. ASME Series H, 1976, vol. 98, pp. 146–51.

    Google Scholar 

  25. 25.

    F. A. McClintock: inFracture, An Advanced Treatise, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. 3, pp. 47–158.

    Google Scholar 

  26. 26.

    R. M. McMeeking and D.M. Parks: inElastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 175–94.

    Google Scholar 

  27. 27.

    R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  28. 28.

    D. A. Curry:Met. Sci., 1980, vol. 14, p. 319.

    CAS  Google Scholar 

  29. 29.

    R. O. Ritchie, W. L. Server, and R. A. Wullaert:Metall. Trans. A, 1979, vol. 10A, pp. 1557–70.

    CAS  Google Scholar 

  30. 30.

    A. G. Evans:Metall. Trans. A, 1983, vol. 14A, pp. 1349–55.

    CAS  Google Scholar 

  31. 31.

    D. A. Curry:Mater. Sci. Eng., 1980, vol. 43, pp. 135–44.

    Article  Google Scholar 

  32. 32.

    D.M. Parks:J. Eng. Matls. Tech., Trans. ASME Series H, 1976, vol. 98, pp. 30–35.

    CAS  Google Scholar 

  33. 33.

    D. A. Curry: CERL Report No. RD/L/N103/79, Central Electricity Generating Board, Sept. 1979, Leatherhead, UK.

    Google Scholar 

  34. 34.

    R. O. Ritchie, L. C. E. Geniets, and J. F. Knott: inThe Microstructure and Design of Alloys, Proc. 3rd Intl. Conf. Strength Metals and Al- loys, Institute of Metals/Iron and Steel Institute, London, 1973, vol. 1, pp. 124–28.

    Google Scholar 

  35. 35.

    J. Kameda and C.J. McMahon:Metall. Trans. A, 1980, vol. 11A, pp. 91–101.

    CAS  Google Scholar 

  36. 36.

    K.N. Akhurst and T. J. Baker:Metall. Trans. A, 1981, vol. 12A, pp. 1059–70.

    Google Scholar 

  37. 37.

    J.R. Rice and D.M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  38. 38.

    F. A. McClintock:J. Applied Mech., Trans. ASME Series E, 1968, vol. 35, pp. 363–71.

    Google Scholar 

  39. 39.

    A.C. Mackenzie, J.W. Hancock, and D.K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  40. 40.

    R.C. Bates: inMetallurgical Treatises, J.K. Tien and J.F. Elliott, eds., TMS-AIME, Warrendale, PA, 1982, pp. 551–70.

    Google Scholar 

  41. 41.

    A.W. Thompson and M.F. Ashby:Scripta Met., 1984, vol. 18, pp. 127–30.

    Article  Google Scholar 

  42. 42.

    A.W. Thompson:Acta Metall., 1983, vol. 31, pp. 1517–23.

    Article  Google Scholar 

  43. 43.

    A.W. Thompson: inAdvances in Fracture Research, Proc. 6th Intl. Conf. on Fracture, India, S. R. Valluri,et al., eds., Pergamon Press, Oxford, 1984, vol. 2, pp. 1393–99.

    Google Scholar 

  44. 44.

    W.J. Drugan, J.R. Rice, and T.-L. Sham:J. Mech. Phys. Solids, 1982, vol. 30, pp. 447–73.

    Article  Google Scholar 

  45. 45.

    L. I. Slepyan:Izv. Akad. Nauk. SSSR Mekhanika Tverdogo Tela, 1974, vol. 9, pp. 57–67 (quoted in Ref. 44).

    Google Scholar 

  46. 46.

    Y.-C. Gao: inElastic-Plastic Fracture, ASTM STP 803, C. F. Shih and J.P. Gudas, eds., American Society for Testing and Materials, Philadelphia, PA, 1983.

    Google Scholar 

  47. 47.

    J. R. Rice and E. P. Sorensen:J. Mech. Phys. Solids, 1978, vol. 26, pp. 163–86.

    Article  Google Scholar 

  48. 48.

    J.R. Rice, W.J. Drugan, and T.-L. Sham: inFracture Mechanics, 12th Conf., ASTM STP 700, American Society for Testing and Mate- rials, Philadelphia, PA, 1980, pp. 189–221.

    Google Scholar 

  49. 49.

    A.D. Chitaley and F.A. McClintock:J. Mech. Phys. Solids, 1971, vol. 19, pp. 147–63.

    Article  Google Scholar 

  50. 50.

    J.R. Rice: inMechanics and Mechanisms of Crack Growth, M. J. May, ed., British Steel Corp., London, 1974, pp. 14–39.

    Google Scholar 

  51. 51.

    J.C. Amazigo and J.W. Hutchinson:J. Mech. Phys. Solids, 1977, vol. 25, pp. 81–97.

    Article  Google Scholar 

  52. 52.

    R. H. Dean and J. W. Hutchinson: inFracture Mechanics, 12th Conf., ASTM STP 700, American Society for Testing and Materials, Philadelphia, PA, 1980, pp. 383–405.

    Google Scholar 

  53. 53.

    F.A. McClintock: “Predicting Elastic-Plastic and Fully Plastic Frac- ture from Hole Growth Mechanisms,” M.I.T. Technical Report, June 1981, Dept. of Mechanical Engineering, M.I.T., Cambridge, MA.

    Google Scholar 

  54. 54.

    H.A. Ernst: inElastic-Plastic Fracture: Second Symposium, Vol.I—Inelastic Crack Analysis, ASTM STP 803, CF. Shih and J.P. Gudas, eds., American Society for Testing and Materials, Philadelphia, PA, 1983, pp. I191-I213.

    Google Scholar 

  55. 55.

    F. A. McClintock and G. R. Irwin: inFracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials, Philadelphia, PA, 1965, pp. 84–113.

    Google Scholar 

  56. 56.

    G. Green and J. F. Knott:J. Mech. Phys. Solids, 1975, vol. 23, pp. 167–83.

    Article  Google Scholar 

  57. 57.

    G. Green and J.F. Knott:J. Eng. Mails. Tech., Trans. ASME Series H, 1976, vol. 98, pp. 37–46.

    CAS  Google Scholar 

  58. 58.

    L. Hermann and J.R. Rice:Met. Sci., 1980, vol. 14, pp. 285–91.

    Article  CAS  Google Scholar 

  59. 59.

    J. Q. Clayton and J. F. Knott:Met. Sci., 1976, vol. 10, p. 63.

    Article  CAS  Google Scholar 

  60. 60.

    A. A. Willoughby, S. J. Garwood, and C. E. Turner: inAdvances in Fracture Research, Proc. 5th Intl. Conf. on Fracture, D. Francois, ed., Pergamon Press, Oxford, 1981, vol. 1, pp. 179–86.

    Google Scholar 

  61. 61.

    G. Green and A. A. Willoughby: CEGB South Western Region Report No. SSD/SW/79/R339, Central Electricity Generating Board, London HQ, U.K., March 1980.

    Google Scholar 

  62. 62.

    G. Green: CEGB South Western Report No. SSD/SW/80/R343, Central Electricity Generating Board, London HQ, U.K., May 1980.

    Google Scholar 

  63. 63.

    A.D. Wilson:J. Eng. Math. Tech., Trans. ASME Series H, 1979, vol. 101, pp. 265–74.

    CAS  Article  Google Scholar 

  64. 64.

    S.T. Rolfe and J. M. Barsom: inFracture and Fatigue Control in Structures, Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  65. 65.

    G. Berry and R. Brook:Int. J. Fracture, 1975, vol. 11, p. 993.

    Google Scholar 

  66. 66.

    S. J. Garwood and C.E. Turner:, 1978, vol. 14, p. R195.

    Article  Google Scholar 

  67. 67.

    M.G. Vassilaros, J.A. Joyce, and J.P. Gudas: inFracture Me- chanics, 14th Symp., vol. 1,Theory and Analysis, ASTM STP 791, J.C. Lewis and G. Sines, eds., American Society for Testing and Materials, Philadelphia, PA, 1983, pp. 165–183.

    Google Scholar 

  68. 68.

    J.A. Joyce:Fracture Me- chanics, 14th Symp.Theory and Analysis, ASTM STP 791, J.C. Lewis and G. Sines, eds., American Society for Testing and Materials, Philadelphia, PA, 1983, pp. 1543–60.

    Google Scholar 

  69. 69.

    G. Clark, S. M. El Soudani, W. G. Ferguson, R. F. Smith, and J. F. Knott: inDuctile Crack Extension in Pressure Vessel Steels, Institution of Mechanical Engineering, London, 1978.

    Google Scholar 

  70. 70.

    G.A. Clarke, W.R. Andrews, P.C. Paris, and D.W. Schmidt: inMechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, Philadelphia, PA, 1976, pp. 27–42.

    Google Scholar 

  71. 71.

    A. W. Thompson and I. M. Bernstein: inHydrogen Effects in Metals, TMS-AIME, Warrendale, PA, 1981, pp. 291–308.

    Google Scholar 

  72. 72.

    A.W. Thompson and J.C. Chesnutt:Metall. Trans. A, 1979, vol. 10A, pp. 1193–96.

    CAS  Google Scholar 

  73. 73.

    C. D. Beachem and R. M. N. Pelloux: inFracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials, Philadelphia, PA, 1965, pp. 210–44.

    Google Scholar 

  74. 74.

    H. W. Liu and J. S. Ke: inExperimental Techniques in Fracture Mechanics, A. S. Kobayashi, ed., Iowa State Univ. Press/Soc. Experi- mental Stress Analysis, Westport, CT, 1975, vol. 2, pp. 111–65.

    Google Scholar 

  75. 75.

    J. Lankford: inMechanical Behavior of Materials-IV, J. Carlsson and N.G. Ohlson, eds., Pergamon Press, Oxford, U.K., 1983, vol. 1, pp. 3–29.

    Google Scholar 

  76. 76.

    A. A. Willoughby, P. L. Pratt, and C. E. Turner:Int. J. Fracture, 1978, vol. 14, pp. R249–51.

    Google Scholar 

  77. 77.

    J.C. Lautridou and A. Pineau:, 1981, vol. 17, pp. R115–19.

    CAS  Google Scholar 

  78. 78.

    T. Shoji:Met. Sci., 1976, vol. 10, pp. 165–69. $

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. O. Ritchie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ritchie, R.O., Thompson, A.W. On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metall Mater Trans A 16, 233–248 (1985). https://doi.org/10.1007/BF02816050

Download citation

Keywords

  • Metallurgical Transaction
  • Crack Initiation
  • Stationary Crack
  • Microvoid Coalescence
  • Crack Initiation Toughness