Skip to main content
Log in

An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for studying excitotoxicity in spinal cord injury

Effect of NMDA and Kainate

  • Published:
Molecular and Chemical Neuropathology

Abstract

We used an experimental model that we previously developed to characterize the damage caused by the agonists of glutamate receptors,N-methyl-d-aspartate (NMDA) and kainate, in the spinal cord in vivo, thereby testing further the utility of this model. Microdialysis was used to, administer the toxins and to sample the release of other substances in response to these agents. The blockage of electrical conduction was monitored by recording the amplitudes of evoked potentials during administration of the damaging substances, and damage was assessed, by postmortem histological examination. The released amino acids in microdialysates were measured by HPLC. Administration of 5 mM NMDA+5mM kainate into the gray matter blocked most postsynaptic responses and caused the release of amino acids. Administration of 10 mM NMDA and 10 mM kainate significantly destroyed cell bodies near the fiber. The advantage of this model is that histological, neurochemical, and electrophysiological parameters were obtained in the same experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers G. W., Goldberg M. P., and Choi D. W. (1989)N-methyl-d-aspartate antagonists: Ready for clinical trial in brain ischemia?Ann. Neurol. 25, 398–403.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y., Tremblay E., and Ottersen O. P. (1980) Injection of kainic acid into the amygdaloid complex of the rat: An electrographic clinical and histological study in relation to the pathology of epilepsy.Neuroscience 5, 515–528.

    Article  PubMed  CAS  Google Scholar 

  • Bracken M. B., Shepard M. J., Collins W. F., Holford T. R., Young W., Baskin D. S., Eisenberg H. M., Flamm E., Leo-Summers L., Maroon J., Marshall L. F., Perot P. L., Jr., Piepmeier J., Sonntag V. K. H., Wagner F. C., Wilberger J. E., and Winn H. R. (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury.New Engl. J. Med. 322, 1405–1411.

    Article  PubMed  CAS  Google Scholar 

  • Burde R. M., Schainker B., and Kayes J. (1971) Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats.Nature 233, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neurosci. Lett. 58, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W., Maulucci-Gedde M., and Kriegstein A. R. (1987) Glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  • Coyle J. T., Molliver M. E., and Kuhar M. J. (1978) In situ injection of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage.J. Comp. Neurol. 180, 301–324.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T., and Schwarcz R (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington's choreaNature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P., Daly M. P., and Faden A. I. (1989) Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cordJ. Neuroschem. 52, 1529–1536.

    Article  CAS  Google Scholar 

  • Eidelberg E., Sullivan J., and Brigham A. (1975) Immediate consequences of spinal cord injury: Possible role of potassium in axonal conduction block.Surg. Neurol. 3, 317–321.

    PubMed  CAS  Google Scholar 

  • Faden, A. I., Demediuk P., Panter S. S., and Vink R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injuryScience 244, 798–800.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Ellison J. A., and Noble L. J., (1990) Effects of competitive and noncompetitive NMDA receptor antagonists in spinal cord injury.Eur. J. Pharmacol. 175, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Lemke M., Simon R. P., and Noble L. J. (1988)N-methyl-d-aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: behavioral, anatomic, and neurochemical studiesJ. Neurotrauma 5, 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., and Simon R. P. (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injuryAnn. Neurol. 23, 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Ferkany J. W., Zaczek R., and Coyle J. T. (1982) Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptorsNature 298, 757–759.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G., and Garthwaite J. (1986) In vitro neurotoxicity of excitatory acid analogues during cerebellar developmentNeuroscience 17, 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Hattori T., and McGeer E. G. (1977) Fine structural changes in the rat striatum after local injections of kainic acid.Brain Res. 129, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Herndon R. M., and Coyle J. T. (1977) Selective destruction of neurons by a transmitter agonist.Science 198, 71,72.

    Article  PubMed  CAS  Google Scholar 

  • Kohler C. (1982) Neuronal degeneration after intracerebral injections of excitotoxins. A histological analysis of kainic acid, ibotenic acid and quinlinic acid lesions in the rat brain, inExcitotoxins (Fuxe K., Roberts P., and Schwarcz R., eds.), Plenum, NY, pp. 99–111.

    Google Scholar 

  • Lehmann A., Isacsson H., and Hamberger A. (1983) Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus.J. Neurochem. 40, 1314–1320.

    PubMed  CAS  Google Scholar 

  • Liu D. (1993) Generation and detection of hydroxyl radical in vivo in rat spinal cord by microdialysis administration of Fenton's reagents and microdialysis sampling.J. Biochem. Biophys. Meth. 27, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., and McAdoo D. J. (1993a) Methylprednisolone reduces excitatory amino acid release following experimental spinal cord injury.Brain Res. 609, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., and McAdoo D. J. (1993b) An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for exploring mechanisms of secondary damage in spinal cord injury: Effects of potassium.J. Neurotrauma 10, 349–362.

    PubMed  CAS  Google Scholar 

  • Liu D., Valadez V., Sorkin L. S., and McAdoo D. J. (1990) Norepinephrine and serotonin release upon impact injury to rat spinal cord.J. Neurotrauma 7, 219–227.

    PubMed  CAS  Google Scholar 

  • Liu D., Thangnipon W., and McAdoo D. J. (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord.Brain Res. 547, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Yang R., Yan X., and McAdoo D. J. (1994) Hydroxyl radical generated in vivo kills neurons in the rat spinal cord: electrophysiological, histological and neurochemical results.J. Neurochem. 62, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Matuszewski B. K., Givens R. S., Srinivasachar K., Carlson R. G., and Higuchi T. (1987)N-Substituted 1-cyanobenz[f]isoindole: Evaluation of fluorescence efficiences of a new fluorogenic label for primary amines and amino acids.Anal. Chem. 59, 1102–1105.

    Article  PubMed  CAS  Google Scholar 

  • McDonald J. W., Roeser N. F., Silverstein F. S., and Johnston M. V. (1989) Quantitative assessment of neuroprotection against NMDA-induced brain injury.Exper. Neurol. 106, 289–296.

    Article  CAS  Google Scholar 

  • McGeer E. G. and McGeer P. L. (1976) Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids.Nature 263, 517–519.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T. K., Hayes R. L., Dewitt D. S., Agura V., and Faden A. I. (1987) Endogenous opioids may mediate secondary damage after experimental brain injury.Am. J. Physiol. 253, E565-E574.

    PubMed  CAS  Google Scholar 

  • Meldrum B. (1985) Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters.Clin. Sci. 68, 113–122.

    PubMed  CAS  Google Scholar 

  • Montigny P. De., Stobaugh J. F., Givens R. S., Carlson R. G., Srinivasachar K., Sternson L. A., and Higuchi T. (1987) Naphthalene-2,3-dicarboxaldehyde/cyanide ion: A rationally designed fluorogenic reagent for primary amines.Anal. Chem. 59, 1096–1101.

    Article  Google Scholar 

  • Nag S., and Riopelle R. J. (1990) Spinal neuronal pathology associated with continuous intrathecal infusion ofN-methyl-d-aspartate in the rat.Acta Neuropathol. 81, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Noble L. J. and Wrathall J. R. (1985) Spinal cord contusion in the rat: Morphometric analyses of alterations of the spinal cord.Exper. Neurol. 88, 135–149.

    Article  CAS  Google Scholar 

  • Olney J. W. (1978) Neurotoxicity of excitatory amino acids, inKatnic Acid as a Tool in Neurobiology (McGeer E. G. ed.) Raven, New York, pp. 95–121.

    Google Scholar 

  • Olney J. W. and Sharpe L. G. (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate.Science 166, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., Ho O. L., and Rhee V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res. 14, 61–76.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., McGeer P. L., Osterholm J. L., and Mathews G. J. (1971) A proposed biochemical mechanism for traumatic spinal cord hemorrhagic necrosis. Successful therapy for severe injury by metabolic blockade.Trans. Amer. Neurol. Assoc. 96, 187–191.

    Google Scholar 

  • Panter S. S., Yum S. W., and Faden A. I. (1990) Alteration in extracellular amino acids after traumatic spinal cord injury.Ann. Neurol. 27, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Pearson H. E., Sonstein W. J., and Stoffler D. J. (1991) Selectivity of kainic acid as a neurotoxin within the dorsal lateral geniculate nucleus of the cat: a model for transneuronal retrograde degeneration.J. Neurocytol. 20, 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Pisharodi M., and Nauta H. J. W. (1985) An animal model for neuron-specific spinal cord lesions by the microinjection ofN-methylaspartate, kainic acid, and quisqualic acid.Appl. Neurophysiol. 48, 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Ransom B. R., Waxman S. G., and Davis P. K. (1990) Anoxic injury of CNS white matter: Protective effect of ketamine.Neurology 40, 1399–1403.

    PubMed  CAS  Google Scholar 

  • Roman R., Bartkowski H., and Simon R. (1989) The specific NMDA receptor anatagonist Ap-7 attenuates focal ischemic brain injury.Neurosci. Lett. 104, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Rothman S. M., and Olney J. W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R. S. and Dempster D. W. (1985). “Epileptic” brain damage is replicated qualitatively in the rat hippocampos by central injection of glutamate or aspartate, but not GABA or acetylcholine.Brain Res. Bull. 15, 39–60.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Tapuhi Y., Schmidt D. E., Linder W., and Karger B. L. (1981) Dansylation of amino acids for high-performance liquid chromatography analysis.Anal. Biochem. 115, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Urca G. and Urca R. (1990) Neurotoxic effects of excitatory amino acids in the mouse spinal cord quisqualate and kainate but notN-methyl-d-aspartate induce permanent neural damage.Brain Res. 529, 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Yezierski R. P., Santana M., Park S.-H., and Madsen P. W. (1993) Neuronal degeneration and spinal cavitation following intraspinal injections of quisqualic acid in the rat.J. Neurotrauma 10, 445–456.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D. An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for studying excitotoxicity in spinal cord injury. Molecular and Chemical Neuropathology 23, 77–92 (1994). https://doi.org/10.1007/BF02815402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815402

Index Entries

Navigation