Skip to main content
Log in

Signal transduction through the sphingomyelin pathway

Molecular and chemical neuropathology

Abstract

The sphingomyelin pathway is a new signal transduction system initiated by hydrolysis of palsma membrane sphingomyelin to ceramide by the actin of a neutral sphingomyelinase. Ceramide serine/threonine protein kinase termed ceramide-activated protein kinase. This kinase belongs to a family of proline-directed protein kinases that recognize substrates containing the minimal motif, X-Thr/Ser-Pro-X, where the phosphoacceptor site is followed on the carboxyl terminus by a proline residue and X may be any amino acid. Three lines of evidence, rapid kinetics of activation of the sphingomyelin pathway by tumor necrosis factor (TNF)α, the ability of cell-permeable ceramide analogs to bypass receptor activation and mimic the effect of TNFα, and reconstitution of this cascade in a cell-free system, support the concept that the sphingomyelin pathway serves to signal TNFα-induced monocytic differentiation. Hence, the sphingomyelin pathway may represent a signaling system analogous to more well-defined systems such as the cyclic adenosine monophosphate and phosphoinositide pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aitken A., Holmes C. F. B., Campbell D. G., Resink T. J., Cohen P., Leung C. T. W., and Williams D. (1984) Amino acid sequence on protein phosphatase inhibitor-2 phosphorylated by glycogen synthetase kinase-3.Biochim. Biophys. Acta 790, 288–291.

    Article  CAS  Google Scholar 

  • Alvarez E., Northwood I. C., Gonzalez F. A., Latour D. A., Seth A., Abate C., Curran T., and Davis R. J. (1991) Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation: characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase.J. Biol. Chem. 266, 15277–15285.

    CAS  PubMed  Google Scholar 

  • Bajjalieh S. M., Martin T. F. J., and Floor E. (1989) Synaptic vesicle ceramide kinase: a calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles.J. Biol. Chem. 264, 14354–14360.

    CAS  PubMed  Google Scholar 

  • Berenholz Y. and Gatt S. (1982) Sphingomyelin: metabolism, chemical synthesis, chemical and physical properties. inPhospholipids (Hawthorne J. N. and Ansell G. B., eds.), pp. 129–177, Elsevier, NY.

    Google Scholar 

  • Berridge M. J. (1989) Inositol trisphosphate, calcium, lithium and cell signaling.J. Am. Med. Assoc. 262, 1834–1841.

    Article  CAS  Google Scholar 

  • Boulton T. G., Nye S. H., Robbins D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho R. A., Panayotatos N., Cobb M. H., and Yancopoulos G. D. (1990) ERKs: a family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF.Cell 65, 663–675.

    Article  Google Scholar 

  • Dobrowsky R. T. and Hannun Y. A. (1992) Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells: Synthesis via ceramide from sphingomyelin.J. Biol. Chem. 265, 14917–14921.

    Google Scholar 

  • Dressler K. A., Mathias S., and Kolesnick R. N. (1992) Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system.Science 255, 1715–1718.

    Article  CAS  Google Scholar 

  • Faucher M., Girones N., Hannun Y. U., Bell R. M., and David R. J. (1988) Regulation of the epidermal growth factor receptor phosphorylation state by sphingosine in A431 human epidermoid carcinoma cells.J. Biol. Chem. 263, 5319–5327.

    CAS  PubMed  Google Scholar 

  • Ghosh T. K., Bian J., and Gill D. L. (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells.Science 48, 1653–1656.

    Article  Google Scholar 

  • Goldkorn T., Dressler K. A., Muindi J., Radin N. S., Mendelsohn J., Menaldino D., Liotta D., and Kolesnick R. N. (1991) Ceramide stimulates epidermal growth factor receptor phosphorylation in A431 human epidermoid carcinoma cells: evidence that ceramide may mediate sphingosine action.J. Biol. Chem. 266, 16092–16097.

    CAS  PubMed  Google Scholar 

  • Hall F. L., Braun R. K., Mihara K., Fung Y.-K. T., Berndt N., Carbonaro-Hall D. A., and Vulliet P. R. (1991) Characterization of the cytoplasmic proline-directed protein kinase in proliferative cells and tissues as a heterodimer comprised of p34cdc2 and p58cyclinA.J. Biol. Chem. 266, 17430–17440.

    CAS  PubMed  Google Scholar 

  • Hannun Y. A., Loomis C., Merrill A. H., Jr., and Bell R. M. (1986) Sphingosine inhibition of protein kinase C activity and of phorbol ester binding in vitro and in human platelets.J. Biol. Chem. 261, 12604–12609.

    CAS  PubMed  Google Scholar 

  • Heiserman G. J. and Gill G. N. (1988) Epidermal growth factor receptor threonine and serine residues phosphorylated in vivo.J. Biol. Chem. 263, 13152–13158.

    Google Scholar 

  • Kim M-Y., Linardic C., Obeid L., and Hannun Y. (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor α and γ-interferon: specific role in cell differentiation.J. Biol. Chem. 266, 484–489.

    CAS  PubMed  Google Scholar 

  • Kolesnick R. N. (1987) 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells.J. Biol. Chem. 262, 16759–16762.

    CAS  PubMed  Google Scholar 

  • Kolesnick R. N. (1991) Sphingomyelin and derivatives as cellular signals.Prog. Lipid Res. 1, 1–38.

    Article  Google Scholar 

  • Kolesnick R. N. (1992) Ceramide: a novel second messenger.Trends Cell Biol. 2, 232–236.

    Article  CAS  Google Scholar 

  • Kolesnick R. N. and Clegg S. (1988) 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells: Evidence for involvement of a sphingomyelinase.J. Biol. Chem. 263, 6534–6537.

    CAS  PubMed  Google Scholar 

  • Kolesnick R. N. and Hemer M. (1990) Characterization of a ceramide kinase activity from human leukemia (HL-60) cells: separation from diacylglycerol kinase.J. Biol. Chem. 265, 18803–18808.

    CAS  PubMed  Google Scholar 

  • Lipsky N. G. and Pagano R. E. (1985) Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane.J. Cell Biol. 100, 27–34.

    Article  CAS  Google Scholar 

  • Mathias S., Dressler K. A., and Kolesnick R. N. (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor α.Proc. Natl. Acad. Sci. USA 88, 10009–10013.

    Article  CAS  Google Scholar 

  • Merrill A. H., Jr., Nimkar S., Menaldino D., Hannun Y. A., Loomis C., Bell R. M., Tyagi S. R., Lambeth D., Stevens V. L., Hunter R., and Liotta D. C. (1989) Structural requirements for long-chain base inhibition of protein kinase C in vitro and for the cellular effects of these compounds.Biochemistry 28, 3138–3145.

    Article  CAS  Google Scholar 

  • Merrill A. H., Jr., Sereni A. M., Stevens V. L., Hannun Y. A., and Bell, R. M. (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases.J. Biol. Chem. 261, 12610–12615.

    CAS  PubMed  Google Scholar 

  • Merrill A. H., Jr. and Stevens V. L. (1989) Modulation of protein kinase C and diverse cell functions by sphingosine—a pharmacologically interesting compound linking sphingolipids and signal transduction.Biochim. Biophys. Acta 1010, 131–139.

    Article  CAS  Google Scholar 

  • Northwood I. C., Gonzalez F. A., Wartmann M., Raden D. L., and Davis R. J. (1991) Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669.J. Biol. Chem. 266, 15266–15276.

    CAS  PubMed  Google Scholar 

  • Okazaki T., Bell R. M., and Hannun Y. A. (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells: role in cell differentiation.J. Biol. Chem. 264, 19076–19080.

    CAS  PubMed  Google Scholar 

  • Okazaki T., Bielawaska A., Bell R. M., and Hannun Y. A. (1990) Role of ceramide as a lipid mediator of 1α, 25-dihydroxyvitamin D3-induced H1-60 cell differentiation.J. Biol. Chem. 265, 15823–15831.

    CAS  PubMed  Google Scholar 

  • Pushkavera M. Y., Khan W. A., Alessenko A. V., Sahyoun N., and Hannun Y. A. (1992) Sphingosine activation of protein kinases in jurkat T cells: in vitro phosphorylation of endogenous protein substrates and specificity of action.J. Biol. Chem. 267, 15426–15251.

    Google Scholar 

  • Schneider E. G. and Kennedy E. P. (1973) Phosphorylation of ceramide by diglyceride kinase preparations fromEscherichia coli.J. Biol. Chem. 248, 3739–3741.

    CAS  PubMed  Google Scholar 

  • Seger R., Ahn N. G., Boulton T. G., Yancopoulos G. D., Panayotatos N., Radziejewska E., Ericsson L., Bratlein R. L., Cobb M. H., and Krebs E. G. (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of action.Proc. Natl. Acad. Sci. USA 88, 6142–6146.

    Article  CAS  Google Scholar 

  • Slife C. W., Wang E., Hunter R., Wang S., Burgess C., Liotta D. C., and Merrill A. H., Jr. (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum.J. Biol. Chem. 264, 10371–10377.

    CAS  PubMed  Google Scholar 

  • Vilcek J. and Lee T. H. (1991) Tumor necrosis factor: new insights into the molecular mechanisms of its multiple actions.J. Biol. Chem. 266, 7313–7316.

    CAS  PubMed  Google Scholar 

  • Wilson E., Olcott M. C., Bell R. M., Merrill A. H., Jr., and Lambeth J. D. (1986) Inhibition of the oxidative burst in human neutrophils by sphingoid longchain bases.J. Biol. Chem. 261, 12616–12623.

    CAS  PubMed  Google Scholar 

  • Younes A., Kahn D. W., Besterman J. M., Bittman R., Byun H.-S., and Kolesnick R. N. (1992) Ceramide is a competitive inhibitor of diacylglycerol kinase in vitro and in intact human leukemia (HL-60) cells.J. Biol. Chem. 267, 842–847.

    CAS  PubMed  Google Scholar 

  • Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., and Spiegel S. (1991) Sphingosine 1-phosphate, a novel lipid, involved in cellular proliferation.J. Cell Biol. 114, 155–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnick, R. Signal transduction through the sphingomyelin pathway. Molecular and Chemical Neuropathology 21, 287–297 (1994). https://doi.org/10.1007/BF02815356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815356

Index Entries

Navigation