Skip to main content
Log in

Nicotinic receptors in the brain

Molecular biology, function, and therapeutics

  • Part I: Nicotinergic Receptors in Neurodegenerative Disorders
  • Published:
Molecular and chemical neuropathology

Abstract

Although the psychological and physiological effects of nicotine have long suggested that nicotine exerts specific actions in the brain, the identification of neuronal nicotinic receptors (nAChRs) only began in the past few years with the development of molecular genetics. It is now clear that neuronal nAChRs form a family of highly heterogenous receptor subtypes, as evidenced by the number of genes encoding nAChR subunits, the diversity of immunopurified receptor proteins, and the multiple functional types of ligand-gated ion channels. Neuronal nAChRs have discrete localizations within the brain, and are involved in modulating neuronal firing and transmitter release. Cumulative evidence from animal and human studies indicates that nicotinic systems play a major role in higher cognitive functions and dysfunctions. In particular, the loss of cortical nAChRs is a neurochemical hallmark of Alzheimer (AD) and Parkinson (PD) diseases. In addition, nicotine improves memory and attention in AD and PD. Our recent studies using electrophysiological biochemical and behavioral approaches suggest that the prefrontal cortex is a major target site for the cognitive actions of nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkondon M. and Albuquerque E. X. (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampla neurons.J. Pharmacol. Exp. Ther. 265, 1455–1473.

    CAS  PubMed  Google Scholar 

  • Araujo D. M., Lapchak P. A., Robitaille Y., Gauthier S., and Quirion R. (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease.J. Neurochem. 50, 1914–1923.

    Article  CAS  Google Scholar 

  • Arneric S. P. and William M. (1995) Neuronal nicotinic acetylcholine receptors: novel targets for CNS therapeutics, inPsychopharmacology: The Fourth Generation of Progress. Raven, New York.

    Google Scholar 

  • Chalmers D. T., Dewar D., Graham D. I., Brooks D. N., and McCullooch J. (1990) Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type.Proc. Natl. Acad. Sci. USA 87, 1352–1356.

    Article  CAS  Google Scholar 

  • Clarke P. B. S. (1992) The fall and rise of neuronal α-bungarotoxin binding proteins.Trends Pharmacol. Sci. 13, 407–413.

    Article  CAS  Google Scholar 

  • Clarke P. B. S., Schwartz R. D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in a rat brain: autoradiographic comparison of3H-nicotine and125I-α bungarotoxin.J. Neurosci. 5, 1307–1315.

    Article  CAS  Google Scholar 

  • Cole A. E., and Nicoll R. A. (1984) The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells.Brain Res. 305, 283–290.

    Article  CAS  Google Scholar 

  • Court J. A., Piggott M. A., Perry E. K., Barlow R. B., and Perry H. H. (1992) Age associated decline in high-affinity nicotine binding in human brain frontal-cortex does not correlate with the changes in choline-acetyltransferase activity.Neurosci. Res. Commun. 10, 125–133.

    CAS  Google Scholar 

  • Flynn D. D., and Mash D. C. (1986) Characterization ofl-[3H] nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal.J. Neurochem. 47, 1948–1954.

    Article  CAS  Google Scholar 

  • Fuster J. M. (1989)The Prefrontal Cortex. Anatomy, Physiology and Neuropsychology of the Frontal Lobe. Raven, New York.

    Google Scholar 

  • Granon S., Poucet B., Thinus-Blanc C., Changeux J.-P., and Vidal C. (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection, and effortful processing.Psychopharmacology 119, 139–144.

    Article  CAS  Google Scholar 

  • Hodges H., Allen Y., Sinden J., Lantos P. L., and Gray J. A. (1991) Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. II. Cholinergic drugs as probes to investigate lesion-induced deficits and transplant-induced functional recovery.Neuroscience 45, 609–623.

    Article  CAS  Google Scholar 

  • Isseroff A., Rosvold H. E., Galkin T. W., and Goldman-Rakic P. S. (1982) Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus.Brain Res. 232, 97–113.

    Article  CAS  Google Scholar 

  • Jones G. M. M., Sahakian B. J., Levy R., Warburton D. M., and Gray J. A. (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer's disease.Psychopharmacology 108, 485–494.

    Article  CAS  Google Scholar 

  • Knight R. T. (1994) Attention regulation and human prefrontal cortex, inMotor and Cognitive Functions of the Prefrontal Cortex (Thierry A. M., Glowinski J., Goldman-Rakic P. S., and Christen Y., eds), Springer Berlin, pp. 160–173.

    Chapter  Google Scholar 

  • Levin, E. D. (1992) Nicotinic systems and cognitive function.Psychopharmacology,108, 417–431.

    Article  CAS  Google Scholar 

  • Markowitsch H. J. (1982) Thalamic mediodorsal nucleus and memory: a critical evaluation of studies in animals and man.Neurosci. Biobehav. Rev. 6, 351–380.

    Article  CAS  Google Scholar 

  • McGurck S. R., Levin E. D., and Butcher L. L. (1991) Impairment of radial-arm maze performance in rats following lesions involving the cholinergic medial pathway: reversal by alrecoline and differential effects of muscarinic and nicotinic antagonists.Neuroscience,44, 137–147.

    Article  Google Scholar 

  • Meyer E. M., Arendash G. W., Judkins J. H., Ying L., Wade C., and Rem W. R. (1987) Effects of nucleus basalis lesions on the muscarinic and nicotinic modulation of [3H]acetylcholine release in the rat cerebral cortex.J. Neurochem. 49, 1758–1762.

    Article  CAS  Google Scholar 

  • Miner L. L., Marks M. J., and Collins A. C. (1986) Genetic analysis of nicotine-induced seizines and hippocampal nicotinic receptors in the mouse.J. Pharmacol. Exp. Ther. 239, 853–860.

    CAS  PubMed  Google Scholar 

  • Muir J. L., Everitt B. J., Robbins T. W. (1995) Reversal of visual attentional dysfunction following AMPA-induced lesions of the basal forebrain by systemic administration of physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron, using a 5-choice serial reaction test (in press).

  • Newhouse P., Sunderland T., Tariot P., Blumhardt C. L., Weingartner H., Mellow A., and Murphy D. L. (1988) Intravenous nicotine in Alzheimer's disease: a pilot study.Psychopharmacology,95, 171–175.

    Article  CAS  Google Scholar 

  • Newhouse P., Sunderland T., Narang P., Mellow A. M., Fertig J., and Lawlor B. A., Murphy D. L. (1990) Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in non-smoking healthy volunteers and patients with Alzheimer's disease.Psychoneuroendocrinology 15, 471–484.

    Article  CAS  Google Scholar 

  • Nordberg A., and Winblad B. (1986) Reduced number of3H-nicotine and3H-acetylcholing binding sites in the frontal cortex of Alzheimer brains.Neurosci. Lett. 72, 115–119.

    Article  CAS  Google Scholar 

  • Olton D. S., Wenk G., Church R. M., and Meck W. H. (1988) Attention and the frontal cortex as examined by simultaneous temporal processing.Neuropsychologia 26, 307–318.

    Article  CAS  Google Scholar 

  • Pardo J. V., Fox P. T., and Raichle M. E. (1991) Localization of a human system for sustained attention by positron emission tomography.Nature,349, 61–64.

    Article  CAS  Google Scholar 

  • Perry E. K., Perry R. H., Smith C. J., Dick D. J., Candy J. M., Edwardson J. A., Fairbairn A., and Blessed G. (1987) Nicotinic receptor abnormalities in Alzheimer's and Parkinson's diseases.J. Neurol. Neurosurg. Psychiatry 50, 806–809.

    Article  CAS  Google Scholar 

  • Prusky G. T., Arbuckle J. M., and Cynader H. S. (1988) Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex.Brain Res. 39, 154–159.

    Article  CAS  Google Scholar 

  • Rinne J. O., Myllykylä T., Lönnberg P., and Marjamäki P. (1991) A post-mortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease.Brain Res. 547, 167–170.

    Article  CAS  Google Scholar 

  • Role L. W. (1992) Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels.Curr. Opinions neurobiol. 2, 254–262.

    Article  CAS  Google Scholar 

  • Sahakian B., Jonnes G., Levy R., Gray J., and Warburton D. (1989) The effects of nicotine on attention, information processing and short-term memory in patients with dementia of Alzheimer type.Br. J. Psychiatry,154, 797–800.

    Article  CAS  Google Scholar 

  • Sahakian B., Owen A. M., Morant N. J., Eagger S. A., Boddington S., Crayton L., Crockford H. A., Crooks M., Hill K., and Levy R. (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer's disease: assessment of attentional and mnemonic function using CANTAB.Psychopharmacology 110, 395–401.

    Article  CAS  Google Scholar 

  • Sahin M., Bowen W. D., and Donoghue J. P. (1992) Location of nicotine and muscarinic cholinergic and mu-opiate receptors in rat cerebral neocortex: evidence from thalamic and cortical lesions.Brain Res. 579, 135–147.

    Article  CAS  Google Scholar 

  • Sargent P. B. (1992) The diversity of neuronal nicotinic acetylcholine receptors.Annu. Rev. Neurosci. 16, 403–443.

    Article  Google Scholar 

  • Schröder H., Zilles K., Maelicke A., and Hajos F. (1989) Immunohisto- and cytochemical localization of cortical nicotinic cholinoceptors in rat and man.Brain Res. 502, 287–295.

    Article  Google Scholar 

  • Schwartz R. D., Lehman J., and Kellar K. J. (1984) Presynaptic nicotinic cholinergic receptors labelled by [3H]acetylcholine on catecholamine and serotonin axons in brain.J. Neurochem. 42, 1495–1498.

    Article  CAS  Google Scholar 

  • Seguela P., Wadiche J., Dinelly-Miller K., Dani J. A., and Patrick J. W. (1993) Molecular cloning, functional properties and distribution of rat brain α7: a nicotinic action channel highly permeable to calcium.J. Neurosci,13, 596–604.

    Article  CAS  Google Scholar 

  • Snell L. D. and Johnson K. M. (1989) Effects of nicotinic agonists and antagonists onN-methyl-d-aspartate-induced3H-norepinephrine release and3H-(1-[1-(2-thienyl)cyclohexyl]-piperidine) binding in rat hippocampus.Synapse,3, 129–135.

    Article  CAS  Google Scholar 

  • Stokes K. A. and Best P. J. (1990) Response biases do not underlie the radial maze deficit in rats with mediodorsal thalamus lesions.Behav. Neurol. Biol. 53, 334–345.

    Article  CAS  Google Scholar 

  • Sugaya K. Giacobini E., and Chiappinelli V. A. (1990) Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer's disease.J. Neurosci. Res. 27, 349–359.

    Article  CAS  Google Scholar 

  • Thierry A. M., Glowinsky J., Goldman-Rakic P. S., and Christen Y. (1994)Motor and Cognitive Functions of the Prefrontal Cortex. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Vidal C. (1994) Nicotinic potentiation of glutamatergic synapses in the prefrontal cortex: new insight into analysis of the role of nicotinic receptors in cognitive functions.Drug Dev. Res. 31, 120–126.

    Article  CAS  Google Scholar 

  • Vidal C. and Changeux J. P. (1993) Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortexin vitro Neuroscience 56, 23–32.

    Article  CAS  Google Scholar 

  • Voytko M. L., Olton D. S., Richardson R. T., Gorman L. K., Tobin J. R., and Price D. L., (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory.J. Neurosci. 14, 157–186.

    Article  Google Scholar 

  • Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., and Swanson L. W. (1989) Distribution of α2, α3, α4, and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat.J. Comp. Neurol. 284, 314–335.

    Article  CAS  Google Scholar 

  • Wevers A., Jeske A., Lobron Ch., Birtsch Ch., Heinemann S., Maelicke A., Schröder R., and Schröder H. (1994) Cellular distribution of nicotinic acetylcholine receptor subunit mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization.Mol. Brain Res. 25, 122–128.

    Article  CAS  Google Scholar 

  • Whitehouse P. J., Marrtino A. M., Antuono P. G., Lowenstein P. R., Coyle J. T., Price D. L., and Kellar K. J. (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease.Brain Res. 371, 146–151.

    Article  CAS  Google Scholar 

  • Wonnacott S., Drasdo A., Sanderson E., and Rowell P. (1990)Presynaptic Nicotinic Receptors and the Modulation of Transmitter Release, in the Biology of Nicotine Dependence. Ciba Foundation Symposium, Chichester, Wiley, pp. 87–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, C. Nicotinic receptors in the brain. Molecular and Chemical Neuropathology 28, 3–11 (1996). https://doi.org/10.1007/BF02815199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815199

Index Entries

Navigation