Molecular and Chemical Neuropathology

, Volume 35, Issue 1–3, pp 23–37 | Cite as

Temporal profile of connexin 43 mRNA expression in a tetanus toxin-induced seizure disorder

  • Kost Elisevich
  • Sandra A. Rempel
  • Brien Smith
  • Kathryn Hirst
Original Articles


The messenger ribonucleic acid (mRNA) of gap junction protein connexin 43 was quantified in the tetanus toxin rat model of focal epilepsy following injection of toxin into the left amygdala. Animals were monitored electrographically at weekly intervals with bilateral amygdala electrodes. Cohorts of 3 rats were sacrificed at weeks 1, 2, 3, 4, 6, 8, and 10, and bilateral regions containing the amygdala and posterior cerebral cortex were sampled, frozen, and later pooled for northern blot analysis. Spike generation was manifest in all animals during the first 4 wk followed by variable attenuation and cessation by 10 wk. Electrode implantation alone was shown by regression analysis to cause significant (p<0.05) elevation of connexin mRNA in weeks 1–4. Injection of toxin diminished connexin mRNA expression in the amygdala when compared to electrode implantation alone. No trend in connexin mRNA expression was established over time in either amygdala or cerebral cortex in the acute epileptic or chronic postepileptic phase.

No association between connexin 43 mRNA expression and the development of epileptogenicity was found in the context of a selflimiting animal model of focal epilepsy.

Index Entries

Tetanus toxin amygdala gap junction epileptic focus cerebral cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charles A. C., Naus C.C., Zhu D., Kidder G. M., Dirksen E. R., and Sanderson M. J. (1992) Intercellular calcium signaling via gap junctions in glioma cells.J. Cell Biol. 118, 195–201.PubMedCrossRefGoogle Scholar
  2. Chomeczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.Google Scholar
  3. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., and Smith S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling.Science 247, 470–473.PubMedCrossRefGoogle Scholar
  4. Dani J. W., Chernjavsky A., and Smith S. J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks.Neuron 8, 429–440.PubMedCrossRefGoogle Scholar
  5. Dermietzel R. and Spray D. C. (1993) Gap junctions in the brain: where, what type, how many and why?Trends Neurosci. 16, 186–192.PubMedCrossRefGoogle Scholar
  6. Dermietzel R., Traub O., Hwang T. K., Beyer E., Bennett M. V. L., Spray D. C., et al. (1989) Differential expression of three gap junction proteins in developing and mature brain tissue.Proc. Natl. Acad. Sci. USA 86, 10,148–10,152.CrossRefGoogle Scholar
  7. De Zeeuw C. I., Wentzel P., and Mugnaini E. (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit.J. Comp. Neurol. 327, 63–82.PubMedCrossRefGoogle Scholar
  8. Dudek F. E., Snow R. W., and Taylor C. (1986) Role of electrical interactions in synchronization of epileptiform bursts.Adv. Neurol. 44, 593–617.PubMedGoogle Scholar
  9. Elisevich K., Rempel S. A., Smith B., and Allar N. (1997) Connexin 43 mRNA expression in two experimental models of epilepsy.Mol. Chem. Neuropathol. 32, 75–88.PubMedGoogle Scholar
  10. Enkvist M. O. K. and McCarthy K. D. (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves.J. Neurochem. 59, 519–526.PubMedCrossRefGoogle Scholar
  11. Feinberg A. P. and Vogelstein B. (1984) Addendum: “A technique for radiolabeling DNA restriction endonuclease fragments to a high specific activity.”Anal. Biochem. 137, 266–267.PubMedCrossRefGoogle Scholar
  12. Finkbeiner S. M. (1992) Calcium waves in astrocytes—filling in the gaps.Neuron 8, 1101–1108.PubMedCrossRefGoogle Scholar
  13. Glotzner F. L. (1973) Membrane properties of neuroglia in epileptogenic gliosis.Brain Res. 55, 154–171.CrossRefGoogle Scholar
  14. Haas H. L. and Jefferys J. G. R. (1984) Low calcium field burst discharges in CA1 pyramidal neurones in rat hippocampal slices.J. Physiol. (Lond.) 354, 185–201.Google Scholar
  15. Hawkins C. A. and Mellanby J. H. (1987) Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study.Epilepsia 18, 431–444.CrossRefGoogle Scholar
  16. Jefferys J. G. R. (1995) Letter to the editor.Trends Neurosci. 18, 520–521.PubMedCrossRefGoogle Scholar
  17. Jefferys J. G. R. and Haas H. L. (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission.Nature 300, 448–450.PubMedCrossRefGoogle Scholar
  18. Jefferys J. G. R. and Williams S. F. (1987) Physiological and behavioural consequences of seizures induced in the rat by intrahippocampal tetanus toxin.Brain 110, 517–532.PubMedCrossRefGoogle Scholar
  19. Konnerth A., Heinemann U., and Yaari Y. (1984) Slow transmission of neural activity in hippocampal area CA1 and in absence of active chemical synapses.Nature 307, 69–71.PubMedCrossRefGoogle Scholar
  20. Lee S. C. and Krasne F. B. (1993) Ultrastructure of the circuit providing input to the crayfish lateral giant neurons.J. Comp. Neurol. 327, 271–288.PubMedCrossRefGoogle Scholar
  21. MacVicar B. A. and Dudek F. E. (1981) Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices.Science 213, 782–785.PubMedCrossRefGoogle Scholar
  22. Mellanby J., Strawbridge P., Collingridge G. I., George G., Rands G., Stroud C., et al. (1981) Behavioural correlates of an experimental hippocampal epileptiform syndrome in rats.J. Neurol. Neurosurg. Psychiatr. 44, 1084–1093.PubMedGoogle Scholar
  23. Micevych P. E. and Abelson L. J. (1991) Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system.J. Comp. Neurol. 305, 96–118.PubMedCrossRefGoogle Scholar
  24. Nagy J. G., Yamamoto T., Shiosaka S., Dewar K. M., Whittaker M. E., and Hertzberg E. L. (1988) Immunohistochemical localization of gap junction protein in CNS: a preliminary account, inModern Cell Biology, vol. 7 (Hertzberg E. L. and Johnson R. G., eds.), pp. 375–389, Wiley Liss, New York.Google Scholar
  25. Nagy J. I., Ochalski P. A., Li J., and Hertzberg E. L. (1997) Evidence for the co-localization of another connexin with connexin-43 at astrocytic gap junctions in rat brain.Neuroscience 78, 533–548.PubMedCrossRefGoogle Scholar
  26. Naus C. C. G., Bechberger J., and Paul D. L. (1991) Gap junction gene expression in human seizure disorder.Exp. Neurol. 111, 198–203.PubMedCrossRefGoogle Scholar
  27. Ochalski P. A., Frankenstein U. N., Hertzberg E. L., and Nagy J. I. (1997) Connexin 43 in rat spinal cord: localization in astrocytes and identification of heterotypic astrooligodendrocytic gap junctions.Neuroscience 76, 931–945.PubMedCrossRefGoogle Scholar
  28. Paul D. L. (1986) Molecular cloning of cDNA for rat liver gap junction protein.J. Cell. Biol. 103, 123–134.PubMedCrossRefGoogle Scholar
  29. Paxinos G. and Watson C. (1986).The Rat Brain in Stereotaxic Coordinates, 2nd ed. Academic, Orlando, FL.Google Scholar
  30. Pereda A. E. and Faber D. S. (1996) Activity-dependent short-term enhancement of intercellular coupling.J. Neurosci. 16, 983–992.PubMedGoogle Scholar
  31. Perez-Velazquez J. L., VAliante T. A., and Carlen P. L. (1994) Modulation of gap junctional mechanisms during calcium-free induced field burst activity: A possible role for electrotonic coupling in epileptogenesis.J. Neurosci. 14, 4308–4317.PubMedGoogle Scholar
  32. Taylor C. P. and Dudek F. E. (1982) Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses.Science 218, 810–812.PubMedCrossRefGoogle Scholar
  33. Taylor C. P. and Dudek F. E. (1982) Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses.Science 218, 810–812.PubMedCrossRefGoogle Scholar
  34. Taylor C. P. and Dudek F. E. (1984) Synchronization without active chemical synapses during hippocampal afterdischarges.J. Neurophysiol. 52, 145–155.Google Scholar
  35. Traub R. D. and Jefferys J. G. R. (1994) Are there unifying principles underlying the generation of epileptic afterdischarges in vitro?Prog. Brain Res. 102, 383–394.PubMedCrossRefGoogle Scholar
  36. Traub R. D. and Miles R. (1991)Neuronal Networks in the Hippocampus. Cambridge University Press, New York.Google Scholar
  37. Traub R. D., Dudek F. E., Snow R. W., and Knowles W. D. (1985) Computer simulations indicate that electrical field effects contribute to the shape of the epileptiform field potential.Neuroscience 15, 947–958.PubMedCrossRefGoogle Scholar
  38. Traub R. D. and Wong R. K. S. (1983) Synaptic mechanisms underlying interictal spike initiation in a hippocampal network.Neurology 33, 257–266.PubMedGoogle Scholar
  39. Valiante T. A., Perez-Velazquez J. L., Jahromi S. S., and Carlen P. L. (1995) Coupling potentials in CA1 neurons during calcium-free induced field burst activity.J. Neurosci. 15, 6946–6956.PubMedGoogle Scholar
  40. Venance L., Piomelli D., Glowinski J., and Giaume C. (1995) Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes.Nature 376, 590–593.PubMedCrossRefGoogle Scholar
  41. Wong R. K. S., Traub R. D., and Miles R. (1986) Cellular basis of neuronal synchrony in epilepsy, inBasic Mechanisms of the Epilepsies. Molecular and Cellular Approaches. Advances in Neurology, vol. 44 (Delgado-Escueta A. V., Ward A. A., Woodbury D. M., and Porter R. J., eds.), pp. 583–592, Raven, New York.Google Scholar
  42. Yamamoto T., Hertzberg E., and Nagy J. (1991) Subsurface cisterns in a-motoneurons of the rat and cat: Immunohistochemical detection with antibodies against connexin 32.Synapse 8, 119–136.PubMedCrossRefGoogle Scholar
  43. Yang X. D., Korn H., and Faber D. S. (1990) Long-term potentiation of electrotonic coupling at mixed synapses.Nature 348, 542–545.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Kost Elisevich
    • 1
  • Sandra A. Rempel
    • 1
  • Brien Smith
    • 2
  • Kathryn Hirst
    • 3
  1. 1.Epilepsy Research Unit, Department of NeurosurgeryHenry Ford Health Sciences CenterDetroit
  2. 2.Department of NeurologyHenry Ford Health Sciences CenterDetroit
  3. 3.Division of Biostatistics and Research EpidemiologyHenry Ford Health Sciences CenterDetroit

Personalised recommendations