Skip to main content

Advertisement

Log in

The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Aluminum is suspected to play a role in several neurological disorders. Reactive oxygen species (ROS) lead to oxidative stress, which is thought to be a possible mechanism for neurological damage. Interactions between aluminum and iron, a known promoter of prooxidant events, were studied in cerebral tissues using a fluorescent probe to measure rates of generation of ROS. Al2(SO4)3 alone failed to stimulate ROS production over a wide range of concentrations (50–1000 μM). The aluminum-deferrioxamine chelate in the absence of iron could also not potentiate ROS formation. However, Al2(SO4)3 potentiated FeSO4-induced ROS, with a maximal effect at 10 μM Fe and 500 μM Al. Kaolin, a hydrated aluminum silicate, did not potentiate iron-induced ROS formation. Ferritin had a minor stimulatory effect on ROS generation, but this was not potentiated by the concurrent presence of Al2(SO4)3. Transferrin had no effect on basal rates of ROS generation, but when Al2(SO4)3 was also present, ROS production was enhanced. It is concluded that:

  1. 1.

    There is a potentiation of iron-induced ROS by aluminum salts;

  2. 2.

    Free or complexed aluminum alone is not a key producer of ROS; and

  3. 3.

    High rates of ROS production are unlikely to be owing to the displacement by aluminum iron from its biologically sequestered locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCFH-DA:

2′, 7′-dichlorofluorescin diacetate

DCFH:

2′, 7′-dichlorofluorescin

DCF:

2′, 7′-dichlorofluorescein

ROS:

reactive oxygen species

References

  • Aruoma O. I., Halliwell B., Laughton M. J., Quinlan G. J., and Gutteridge J. M. C. (1989) The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron (II)-iron(III) conplex.Biochem. J. 258, 617–620.

    PubMed  CAS  Google Scholar 

  • Bass D. A., Parce J. W., Dechatelet L. R., Szeda P., and Seeds M. C. (1983) Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation.J. Immunol. 130, 1910–1917.

    PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Dean J. A. (1979)Lange's Handbook of Chemistry, 12th ed., New York, McGraw-Hill, p. 55.

    Google Scholar 

  • Dedman D. J., Treffry A., Candy J. M., Taylor G. A. A., Morris C. M., Bloxham C. A., Perry R. H., Edwardson J. A., and Harrison P. M. (1992) Iron and aluminum in relation to brain ferritin in normal individuals and Alzheimer's disease and chronic renal dialysis patients.Biochem. J. 287, 509–514.

    PubMed  CAS  Google Scholar 

  • Evans P. H., Klinowski J., and Vano E. (1991) Cephaloconiosis: a free radical perspective on the proposed particulate-induced etiopathogenesis of Alzheimer's dementia and related disorders.Med. Hypotheses 34, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Evans P. H., Peterhans E., Burge T., and Klinowski J. (1992) Aluminosilicate-induced free radical generation by murine brain glial cells in vitro: potential significance in the aetiopathogenesis of Alzheimer's dementia.Dementia 3, 1–6.

    Google Scholar 

  • Fleming J. T., and Joshi J. G. (1991) Ferritin: the role of aluminum in ferritin function.Neurobiol. Aging 12, 413–418.

    Article  PubMed  CAS  Google Scholar 

  • Fraga C. G., Oteiza P. I., Golub M. S., Gershwin M. E., and Keen C. L. (1990) Effects of aluminum on brain lipid peroxidation.Toxicol. Lett. 51, 312–219.

    Article  Google Scholar 

  • Garrel C., Lafond J. L., Guiraud P., Faure P., and Favier A. (1994) Induction of production of nitric oxide in microglial cells by insoluble form of aluminum.Ann. NY Acad. Sci. 738, 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Good P. F., Olanow C. W., and Perl D. P. (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study.Brain Res. 593, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge J. M. C., Quinlan G. J., Clark I., and Halliwell B. (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by irons salts.Biochim. Biophys. Acta 835, 441–447.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. (1989) Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action?Free Rad. Biol. Med. 7, 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Carney J. M., Mattsom M. P., Aksenova M., Harris M., Wu J. F., Floyd R. A., and Butterfield D. A. (1994) A model for beta-amyloid aggregation and neurotoxicity based on a free radical generation by the peptide: relevance to Alzheimer disease.Proc. Nat. Acad. Sci. 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E. C., Brandel J-P., Galle P., and Javoy-Agid F. (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis.J. Neurochem. 56, 46–51.

    Article  Google Scholar 

  • Kruck T. P. A., Fisher E. A., and McLachlan D. R. C. (1993) Suppression of deferoxamine mesylate side effects by co-administration of isoniazid in a patient with Alzheimer's disease subject to aluminum removal by ion specific chelation.Clin. Pharm. Ther. 48, 439–446.

    Google Scholar 

  • Kukiella E. and Cederbaum A. E. (1994) Ferritin stimulation of hydroxyl radical production by rat liver nuclei.Arch. Biochem. Biophys. 308, 70–88.

    Article  Google Scholar 

  • LeBel C. P. and Bondy S. C. (1990) Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.Neurochem. Int. 17, 435–440.

    Article  CAS  PubMed  Google Scholar 

  • Mantyh P. W., Ghilardi J. R., Rogers S., DeMaster E., Allen C. J., Stimson E. R., and Maggio J. E. (1993) Aluminum, iron and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide.J. Neurochem. 61, 1171–1174.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan D. R. C., Lukiw W. J., and Kruck T. P. A. (1989) New evidence for an active role of aluminum in Alzheimer's disease.Can. J. Neurol. Sci. 16, 490–497.

    PubMed  CAS  Google Scholar 

  • Oteiza P. I. (1994) A mechanism for the stimulatory effect of aluminum on iron induced lipid peroxidation.Arch. Biochem. Biophys. 308, 374–379.

    Article  PubMed  Google Scholar 

  • Oteiza P. I., Fraga C. G., and Keen C. L. (1993) Aluminum has both oxidant and antioxidant effects in mouse brain membranes.Arch. Biochem. Biophys 300, 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla M. A., Omar R. A., Kim K. S., and Robakis N. K. (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer's disease.Am. J. Pathol. 140, 621–628.

    PubMed  CAS  Google Scholar 

  • Perl D. P., Gajdusek D. C., Garruto R. M., Yanagihara R. T., and Gibbs C. J. (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonian-dementia of Guam.Science 217, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Roskams A. J. and Connor J. R. (1990) Aluminum access to the brain: a role for transferrin and its receptor.Proc. Natl. Acad. Sci. USA 87, 9024–9027.

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu K. and McGeer P. L. (1992) Accumulation of amyloid precursor protein in damaged neuronal processes and microglia following intracerebral administration of aluminum salts.Brain Res. 593, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., and Floyd R. A. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer's disease.Proc. Natl. Acad. Sci. USA 88, 10540–10543.

    Article  PubMed  CAS  Google Scholar 

  • Subbarao K. V., Richardson J. S., and Ang L. C. (1990) Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro.J. Neurochem. 55, 342–345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondy, S.C., Kirstein, S. The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum. Molecular and Chemical Neuropathology 27, 185–194 (1996). https://doi.org/10.1007/BF02815093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815093

Index Entries

Navigation